Keyless Signature Infrastructure® (KSI™) Technology Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Keyless Signature Infrastructure® (KSI™) Technology Introduction Guardtime Federal, LLC Proprietary Keyless Signature Infrastructure® (KSI™) Technology An Introduction to KSI Blockchain Technology and Its Benefits Executive Summary The use of blockchain technology to provide digital integrity has exploded in financial applications. Widely proliferated blockchain technology consumes significant storage, communications bandwidth and time for each transaction, whereas Guardtime-Federal, LLC provides Keyless Signature Infrastructure (KSI) that is a blockchain designed for security, scalability and speed. Through the properties of verifiable authenticity, identity of the client, and non-global positioning system-based non-spoofable time; KSI provides provenance, integrity and identity associated with digital assets. This implementation consumes far less storage and bandwidth than widely proliferated blockchain technology and can provide the above defined attributes for thousands of files a second scalable to billions. KSI cryptographically links data assets with immutable properties provided by the KSI infrastructure, and implemented in a KSI signature. KSI promises this additional integrity and authenticity in newly created or already existing data whether on the network, in embedded systems or traversing the cloud. Customers who implement KSI can prove their current and future information systems are in a truthful state and meet business and mission needs with increased security. KSI was designed with considerations for security, scalability, and speed to meet the requirements for a host of complex applications. By integrating KSI into healthcare systems, irrespective of where a digital asset is transmitted or stored, every component, configuration, and digital health record/entry generated by humans or machines can be verified independently in real-time, independent of trusted administrators. KSI provides a truth-based system wherein the need for trust can be completely eliminated. Guardtime Federal, LLC is a small technology company that makes KSI available to the US Federal ecosystem. With KSI, digital assets and their provenance can be authenticated in real- time, anywhere in the world, independent of the service provider. KSI signatures are portable, literally become part of the digital asset, and are used to provide proof of time, identity and authenticity. Verification of digital signature at a future time provides evidence of its integrity. Introduction This paper is divided into three sections. First, the paper will provide a basic description of KSI technology. This description will include an explanation of the logical and mathematical processes as well and the security infrastructure necessary to offer the capability in a fashion that assures integrity of the process. Second, the paper will provide a discussion of how this implementation differs from other blockchain approaches. Finally, the last section will propose examples of how KSI may be useful for healthcare and healthcare-related research. This section will address how KSI can be used to assure integrity of patient records, compliance of personally identifiable information protection standards, provide tamper resistance of telehealth care information, impart authenticity verification into clinical trials reliability, and in healthcare fraud detection and prevention. Guardtime Federal, LLC Proprietary 1 Guardtime Federal, LLC Proprietary Keyless Signature Infrastructure® (KSI™) Technology Keyless Signature Infrastructure (KSI) technology was initially developed in 2007 with the goal to impart a tag on any digital file that would forever be effective in determining its authenticity. Exploiting a mathematically derived artifact of a file called a hash along with the hashes of other files created in the same time increment, and combining them in a mathematically known manner called a hash tree or a Merkle Tree accomplish this. This process cryptographically links all the artifacts of the files created or modified in that time increment and creates a top root hash that can be used in a proof that shows the contribution of every file. Once this top root hash is determined, it is then combined with the top root hashes from previous time increments in a hash calendar. Combination of all the artifacts for a particular instant in time can be summarized on a publication code. The steps taken in the mathematical sequence of combining the hashes is well- defined and repeatable. The process and path used to move from initial hash to the publication code is defined in a unique digital KSI signature (approximately 2 kilobytes). In this implementation the artifacts from the files in the current time increment are cryptographically linked to all the artifacts of files brought into these processes since it was initiated and a summary is provided in the publication code. This is one instantiation of what has been called a blockchain. To verify the authenticity of any digital file, one must have the file under test. With the hash of the file under test and the signature attributed to the original file, verification is accomplished by using the hash of the file under test as the starting hash and processing it through the Merkle Tree with the data from the original signature and comparing the result to the publication code. There is no mystery to the approach, no puzzles to be discovered, the process follows the published KSI process (the Merkle Tree) using the KSI signature and comparing the result to a published result. If the process generates the same publication code, it is identical to the original file. If it does not, then it is a forgery or an altered version. The top root hashes of every time increment are stored in the KSI infrastructure such that it is always available for verifying signatures. This storage scales at approximately 2 gigabytes per year, scaling with time, not with number of items signed or processed. Note that a hash is a one-way function such that a file can be hashed but there is no mathematical process that allows one to re-create the file from a hash. Once the initial file is hashed, all other processes have no insight into the content of the original file and the file content is not widely distributed. Only the hashed artifacts of the file are widely distributed. This enables anyone to verify the contribution of a hash at a point in time without having to be exposed to the potentially sensitive data in the original file (e.g., personal medical data). The information derived from a KSI signature means the asset’s chain-of-custody information (pedigree), creation time, and authenticity information remains undisputable and is subsequently verified as truth without trusting or solely relying upon an administrator or a shared secret (such as a key or Public Key Infrastructure (PKI) credential). Instead, KSI uses a ‘proof-based’ method to accomplish authentication and our signature is portable across any computing platform. KSI signatures are based on mathematical proofs and keyless cryptographic functions approved by the European Union (EU) and National Institute of Standards (NIST). Guardtime Federal, LLC Proprietary 2 Guardtime Federal, LLC Proprietary KSI addresses the need to prove data integrity and detect changes in data authenticity at rest and in motion. It is a blockchain technology, which provides massive scale data authentication without reliance on centralized trust authorities. KSI forms a unique calendar hash chain (CHC) that is a distributed database across the infrastructure. Records can only be added to the database, never removed, with each new record cryptographically linked to all previous records in time. New records can only be added based on synchronous agreement or ‘distributed consensus’ of the parties maintaining the database. Since records are cryptographically linked, it is impossible for one party to manipulate previous records without breaking the overall consistency of the database. 1. Blockchain Meets Security KSI is designed to provide secure, scalable, digital, signature-based authentication for electronic data, machines and personal information. Unlike traditional approaches that depend on asymmetric key cryptography, KSI uses only hash-function cryptography, allowing verification to rely only on the security of hash-functions and the availability of the history of cryptologically linked root hashes (the blockchain). The KSI blockchain overcomes two of the major weaknesses of traditional blockchains, speed and storage capacity, making it usable at industrial scale. One of the most significant challenges with traditional blockchain approaches is scalability; typically they grow linearly with the number of transactions. In contrast the KSI blockchain scales temporally; it grows linearly with time and independent from the number of transactions. The second significant challenge is time to record an individual transaction. Some refer to this as settlement time for a large number of nodes to witness a transaction often taking many minutes to complete a transaction. In contrast KSI has a straightforward mathematical process that provides signatures on the order of one second, that is once a second generating signature for thousands of client requests. The KSI approach to implementing digital integrity is to provide a secure infrastructure consisting of cores, aggregators, and gateways to create keyless signatures. This infrastructure runs on our Black Lantern Security Appliances that is an integrated hardware and software platform purposely built to mitigate both remote and physical
Recommended publications
  • Angela: a Sparse, Distributed, and Highly Concurrent Merkle Tree
    Angela: A Sparse, Distributed, and Highly Concurrent Merkle Tree Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera, Cibi Pari Abstract— Merkle trees allow for efficient and authen- with high query throughput. Any concurrency overhead ticated verification of data contents through hierarchical should not destroy the system’s performance when the cryptographic hashes. Because the contents of parent scale of the merkle tree is very large. nodes in the trees are the hashes of the children nodes, Outside of Key Transparency, this problem is gen- concurrency in merkle trees is a hard problem. The eralizable to other applications that have the need current standard for merkle tree updates is a naive locking of the entire tree as shown in Google’s merkle tree for efficient, authenticated data structures, such as the implementation, Trillian. We present Angela, a concur- Global Data Plane file system. rent and distributed sparse merkle tree implementation. As a result of these needs, we have developed a novel Angela is distributed using Ray onto Amazon EC2 algorithm for updating a batch of updates to a merkle clusters and uses Amazon Aurora to store and retrieve tree concurrently. Run locally on a MacBook Pro with state. Angela is motivated by Google Key Transparency a 2.2GHz Intel Core i7, 16GB of RAM, and an Intel and inspired by it’s underlying merkle tree, Trillian. Iris Pro1536 MB, we achieved a 2x speedup over the Like Trillian, Angela assumes that a large number of naive algorithm mentioned earlier. We expanded this its 2256 leaves are empty and publishes a new root after algorithm into a distributed merkle tree implementation, some amount of time.
    [Show full text]
  • Enabling Authentication of Sliding Window Queries on Streams
    Proof­Infused Streams: Enabling Authentication of Sliding Window Queries On Streams Feifei Li† Ke Yi‡ Marios Hadjieleftheriou‡ George Kollios† †Computer Science Department Boston University ‡AT&T Labs Inc. lifeifei, gkollios @cs.bu.edu yike, marioh @research.att.com { } { } ABSTRACT As computer systems are essential components of many crit- ical commercial services, the need for secure online transac- . tions is now becoming evident. The demand for such appli- cations, as the market grows, exceeds the capacity of individ- 0110..011 ual businesses to provide fast and reliable services, making Provider Servers outsourcing technologies a key player in alleviating issues Clients of scale. Consider a stock broker that needs to provide a real-time stock trading monitoring service to clients. Since Figure 1: The outsourced stream model. the cost of multicasting this information to a large audi- ence might become prohibitive, the broker could outsource providers, who would be in turn responsible for forwarding the stock feed to third-party providers, who are in turn re- the appropriate sub-feed to clients (see Figure 1). Evidently, sponsible for forwarding the appropriate sub-feed to clients. especially in critical applications, the integrity of the third- Evidently, in critical applications the integrity of the third- party should not be taken for granted, as the latter might party should not be taken for granted. In this work we study have malicious intent or might be temporarily compromised a variety of authentication algorithms for selection and ag- by other malicious entities. Deceiving clients can be at- gregation queries over sliding windows. Our algorithms en- tempted for gaining business advantage over the original able the end-users to prove that the results provided by the service provider, for competition purposes against impor- third-party are correct, i.e., equal to the results that would tant clients, or for easing the workload on the third-party have been computed by the original provider.
    [Show full text]
  • Providing Authentication and Integrity in Outsourced Databases Using Merkle Hash Tree’S
    Providing Authentication and Integrity in Outsourced Databases using Merkle Hash Tree's Einar Mykletun Maithili Narasimha University of California Irvine University of California Irvine [email protected] [email protected] Gene Tsudik University of California Irvine [email protected] 1 Introduction In this paper we intend to describe and summarize results relating to the use of authenticated data structures, specifically Merkle Hash Tree's, in the context of the Outsourced Database Model (ODB). In ODB, organizations outsource their data management needs to an external untrusted service provider. The service provider hosts clients' databases and offers seamless mechanisms to create, store, update and access (query) their databases. Due to the service provider being untrusted, it becomes imperative to provide means to ensure authenticity and integrity in the query replies returned by the provider to clients. It is therefore the goal of this paper to outline an applicable data structure that can support authenticated query replies from the service provider to the clients (who issue the queries). Merkle Hash Tree's (introduced in section 3) is such a data structure. 1.1 Outsourced Database Model (ODB) The outsourced database model (ODB) is an example of the well-known Client-Server model. In ODB, the Database Service Provider (also referred to as the Server) has the infrastructure required to host outsourced databases and provides efficient mechanisms for clients to create, store, update and query the database. The owner of the data is identified as the entity who has to access to add, remove, and modify tuples in the database. The owner and the client may or may not be the same entity.
    [Show full text]
  • The SCADS Toolkit Nick Lanham, Jesse Trutna
    The SCADS Toolkit Nick Lanham, Jesse Trutna (it’s catching…) SCADS Overview SCADS is a scalable, non-relational datastore for highly concurrent, interactive workloads. Scale Independence - as new users join No changes to application Cost per user doesn’t increase Request latency doesn’t change Key Innovations 1. Performance safe query language 2. Declarative performance/consistency tradeoffs 3. Automatic scale up and down using machine learning Toolkit Motivation Investigated other open-source distributed key-value stores Cassandra, Hypertable, CouchDB Monolithic, opaque point solutions Make many decisions about how to architect the system a -prori Want set of components to rapidly explore the space of systems’ design Extensible components communicate over established APIs Understand the implications and performance bottlenecks of different designs SCADS Components Component Responsibilities Storage Layer Persist and serve data for a specified key responsibility Copy and sync data between storage nodes Data Placement Layer Assign node key responsibilities Manage replication and partition factors Provide clients with key to node mapping Provides mechanism for machine learning policies Client Library Hides client interaction with distributed storage system Provides higher-level constructs like indexes and query language Storage Layer Key-value store that supports range queries built on BDB API Record get(NameSpace ns, RecordKey key) list<Record> get_set (NameSpace ns, RecordSet rs ) bool put(NameSpace ns, Record rec) i32 count_set(NameSpace ns, RecordSet rs) bool set_responsibility_policy(NameSpace ns,RecordSet policy) RecordSet get_responsibility_policy(NameSpace ns) bool sync_set(NameSpace ns, RecordSet rs, Host h, ConflictPolicy policy) bool copy_set(NameSpace ns, RecordSet rs, Host h) bool remove_set(NameSpace ns, RecordSet rs) Storage Layer Storage Layer Storage Layer: Synchronize Replicas may diverge during network partitions (in order to preserve availability).
    [Show full text]
  • Authentication of Moving Range Queries
    Authentication of Moving Range Queries Duncan Yung Eric Lo Man Lung Yiu ∗ Department of Computing Hong Kong Polytechnic University {cskwyung, ericlo, csmlyiu}@comp.polyu.edu.hk ABSTRACT the user leaves the safe region, Thus, safe region is a powerful op- A moving range query continuously reports the query result (e.g., timization for significantly reducing the communication frequency restaurants) that are within radius r from a moving query point between the user and the service provider. (e.g., moving tourist). To minimize the communication cost with The query results and safe regions returned by LBS, however, the mobile clients, a service provider that evaluates moving range may not always be accurate. For instance, a hacker may infiltrate queries also returns a safe region that bounds the validity of query the LBS’s servers [25] so that results of queries all include a partic- results. However, an untrustworthy service provider may report in- ular location (e.g., the White House). Furthermore, the LBS may be correct safe regions to mobile clients. In this paper, we present effi- self-compromised and thus ranks sponsored facilities higher than cient techniques for authenticating the safe regions of moving range actual query result. The LBS may also return an overly large safe queries. We theoretically proved that our methods for authenticat- region to the clients for the sake of saving computing resources and ing moving range queries can minimize the data sent between the communication bandwidth [22, 16, 30]. On the other hand, the LBS service provider and the mobile clients. Extensive experiments are may opt to return overly small safe regions so that the clients have carried out using both real and synthetic datasets and results show to request new safe regions more frequently, if the LBS charges fee that our methods incur small communication costs and overhead.
    [Show full text]
  • Executing Large Scale Processes in a Blockchain
    The current issue and full text archive of this journal is available on Emerald Insight at: www.emeraldinsight.com/2514-4774.htm JCMS 2,2 Executing large-scale processes in a blockchain Mahalingam Ramkumar Department of Computer Science and Engineering, Mississippi State University, 106 Starkville, Mississippi, USA Received 16 May 2018 Revised 16 May 2018 Abstract Accepted 1 September 2018 Purpose – The purpose of this paper is to examine the blockchain as a trusted computing platform. Understanding the strengths and limitations of this platform is essential to execute large-scale real-world applications in blockchains. Design/methodology/approach – This paper proposes several modifications to conventional blockchain networks to improve the scale and scope of applications. Findings – Simple modifications to cryptographic protocols for constructing blockchain ledgers, and digital signatures for authentication of transactions, are sufficient to realize a scalable blockchain platform. Originality/value – The original contributions of this paper are concrete steps to overcome limitations of current blockchain networks. Keywords Cryptography, Blockchain, Scalability, Transactions, Blockchain networks Paper type Research paper 1. Introduction A blockchain broadcast network (Bozic et al., 2016; Croman et al., 2016; Nakamoto, 2008; Wood, 2014) is a mechanism for creating a distributed, tamper-proof, append-only ledger. Every participant in the broadcast network maintains a copy, or some representation, of the ledger. Ledger entries are made by consensus on the states of a process “executed” on the blockchain. As an example, in the Bitcoin (Nakamoto, 2008) process: (1) Bitcoin transactions transfer Bitcoins from a wallet to one or more other wallets. (2) Bitcoins created by “mining” are added to the miner’s wallet.
    [Show full text]
  • IB Case Study Vocabulary a Local Economy Driven by Blockchain (2020) Websites
    IB Case Study Vocabulary A local economy driven by blockchain (2020) Websites Merkle Tree: https://blockonomi.com/merkle-tree/ Blockchain: https://unwttng.com/what-is-a-blockchain Mining: https://www.buybitcoinworldwide.com/mining/ Attacks on Cryptocurrencies: https://blockgeeks.com/guides/hypothetical-attacks-on-cryptocurrencies/ Bitcoin Transaction Life Cycle: https://ducmanhphan.github.io/2018-12-18-Transaction-pool-in- blockchain/#transaction-pool 51 % attack - a potential attack on a blockchain network, where a single entity or organization can control the majority of the hash rate, potentially causing a network disruption. In such a scenario, the attacker would have enough mining power to intentionally exclude or modify the ordering of transactions. Block - records, which together form a blockchain. ... Blocks hold all the records of valid cryptocurrency transactions. They are hashed and encoded into a hash tree or Merkle tree. In the world of cryptocurrencies, blocks are like ledger pages while the whole record-keeping book is the blockchain. A block is a file that stores unalterable data related to the network. Blockchain - a data structure that holds transactional records and while ensuring security, transparency, and decentralization. You can also think of it as a chain or records stored in the forms of blocks which are controlled by no single authority. Block header – main way of identifying a block in a blockchain is via its block header hash. The block hash is responsible for block identification within a blockchain. In short, each block on the blockchain is identified by its block header hash. Each block is uniquely identified by a hash number that is obtained by double hashing the block header with the SHA256 algorithm.
    [Show full text]
  • Efficient Verification of Shortest Path Search Via Authenticated Hints Man Lung YIU Hong Kong Polytechnic University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Knowledge at Singapore Management University Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Information Systems School of Information Systems 3-2010 Efficient Verification of Shortest Path Search Via Authenticated Hints Man Lung YIU Hong Kong Polytechnic University Yimin LIN Singapore Management University, [email protected] Kyriakos MOURATIDIS Singapore Management University, [email protected] DOI: https://doi.org/10.1109/ICDE.2010.5447914 Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific omputC ing Commons Citation YIU, Man Lung; LIN, Yimin; and MOURATIDIS, Kyriakos. Efficient Verification of Shortest Path Search Via Authenticated Hints. (2010). ICDE 2010: IEEE 26th International Conference on Data Engineering: Long Beach, California, USA, 1 - 6 March 2010. 237-248. Research Collection School Of Information Systems. Available at: https://ink.library.smu.edu.sg/sis_research/507 This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore Management University.
    [Show full text]
  • Redactable Hashing for Time Verification
    Technical Disclosure Commons Defensive Publications Series January 2021 Redactable Hashing for Time Verification Jan Schejbal Follow this and additional works at: https://www.tdcommons.org/dpubs_series Recommended Citation Schejbal, Jan, "Redactable Hashing for Time Verification", Technical Disclosure Commons, (January 24, 2021) https://www.tdcommons.org/dpubs_series/3999 This work is licensed under a Creative Commons Attribution 4.0 License. This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. Schejbal: Redactable Hashing for Time Verification REDACTABLE HASHING FOR TIME VERIFICATION Cryptographic hashes (outputs of cryptographically secure hash functions) are used to uniquely identify secret information without making such information public. A cryptographic hash function is a deterministic computation that produces the same outputs for the same inputs while ensuring that even a small change of the input (e.g., a change of only one or several bits) results in an unpredictable output that has little resemblance to the original (unmodified) input. Furthermore, it is not possible to efficiently find an input matching a certain hash value or two different inputs having the same hash value; an attacker that attempts to do so would need to test numerous values until one matches, which is computationally infeasible for a sufficiently large space of possible values. The quasi-randomness property of hashes makes them useful for mapping protected information while ensuring that the information is not easily discoverable by a malicious attacker or an unauthorized viewer. Hashes can be used to derive cryptographic keys from other (strong or even weak) cryptographic material.
    [Show full text]
  • "On Merkle Trees", Dr Craig S Wright
    On Merkle Trees Dr Craig S Wright By now, it should be well understood that Bitcoin utilises the concept of a Merkle tree to its advantage; by way of background, we provide an explanation in this post. The following aids as a technical description and definition of similar concepts used more generally in Bitcoin and specifically within SPV. Merkle trees are hierarchical data structures that enable secure verification of collections of data. In a Merkle tree, each node in the tree has been given an index pair (i, j) and is represented as N(i, j). The indices i, j are simply numerical labels that are related to a specific position in the tree. An important feature of the Merkle tree is that the construction of each of its nodes is governed by the following (simplified) equations: 퐻(퐷 ) 푖 = 푗 푁(푖, 푗) = { 푖 , 퐻(푁(푖, 푘) ∥ 푁(푘 + 1, 푗)) 푖 ≠ 푗 where 푘 = (푖 + 푗 − 1)⁄2 and H is a cryptographic hash function. A labelled, binary Merkle tree constructed according to the equations is shown in figure 1, from which we can see that the i = j case corresponds to a leaf node, which is simply the hash of the th corresponding i packet of data Di. The 푖 ≠ 푗 case corresponds to an internal or parent node, which is generated by recursively hashing and concatenating child nodes, until one parent (the Merkle root) is found. Figure 1. A Merkle tree. For example, the node 푁(1,4) is constructed from the four data packets 퐷1, … , 퐷4 as 푁(1,4) = 퐻(푁(1,2) ∥ 푁(3,4)) .
    [Show full text]
  • Practical Authenticated Pattern Matching with Optimal Proof Size
    Practical Authenticated Pattern Matching with Optimal Proof Size Dimitrios Papadopoulos Charalampos Papamanthou Boston University University of Maryland [email protected] [email protected] Roberto Tamassia Nikos Triandopoulos Brown University RSA Laboratories & Boston University [email protected] [email protected] ABSTRACT otherwise. More elaborate models for pattern matching involve We address the problem of authenticating pattern matching queries queries expressed as regular expressions over Σ or returning multi- over textual data that is outsourced to an untrusted cloud server. By ple occurrences of p, and databases allowing search over multiple employing cryptographic accumulators in a novel optimal integrity- texts or other (semi-)structured data (e.g., XML data). This core checking tool built directly over a suffix tree, we design the first data-processing problem has numerous applications in a wide range authenticated data structure for verifiable answers to pattern match- of topics including intrusion detection, spam filtering, web search ing queries featuring fast generation of constant-size proofs. We engines, molecular biology and natural language processing. present two main applications of our new construction to authen- Previous works on authenticated pattern matching include the ticate: (i) pattern matching queries over text documents, and (ii) schemes by Martel et al. [28] for text pattern matching, and by De- exact path queries over XML documents. Answers to queries are vanbu et al. [16] and Bertino et al. [10] for XML search. In essence, verified by proofs of size at most 500 bytes for text pattern match- these works adopt the same general framework: First, by hierarchi- ing, and at most 243 bytes for exact path XML search, indepen- cally applying a cryptographic hash function (e.g., SHA-2) over the dently of the document or answer size.
    [Show full text]
  • Keyless Signature Infrastructure for Digital India's Security
    ISSN (Online) 2456 -1304 International Journal of Science, Engineering and Management (IJSEM) Vol 4, Issue 10, October 2019 Keyless Signature Infrastructure for Digital India’s Security [1] Mridul Sharma, [2]Rupali Sharma [1][2] University Institute of Engineering, Rayat Bahra University, Mohali, Punjab, India Abstract— In the making of new Digital India there are lots of threats which are there in the path of this dream. Acts of data breach of AADHAAR and Bank Accounts due to the lack of security in our digital services are common but the world is now, moving towards digital era so to be with the world in this digital transformation we must work on our security enhancement to provide a secure platform to government organisations. To serve the three aspects of security that is confidentiality, integrity, and availability of data we need an infrastructure that ensures all these. The Blockchain-Based KSI is the new technology which will support the government of India to achieve its goal of ensuring secure digital Services. It will help the government in providing strong authentication through digital signatures, and will also give the citizens a trust that their PII data is secure and confidential so that they can use these digital services for their all daily work. On the inspiration from Estonia where all their government services are digital in a way such that every government work from issuing a birth certificate to passport verification all these tasks are done digitally. This paper is made to help India in the implementation of this powerful Infrastructure for the digital governmental services providing ease to people and bureaucrats.
    [Show full text]