University of California, San Diego

Total Page:16

File Type:pdf, Size:1020Kb

University of California, San Diego UC San Diego UC San Diego Electronic Theses and Dissertations Title Progress towards the total synthesis of the hasubanan alkaloids and acutumine Permalink https://escholarship.org/uc/item/1n90s3wf Author Nguyen, Thong Xuan Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Progress Towards the Total Synthesis of the Hasubanan Alkaloids and Acutumine A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Thong Xuan Nguyen Committee in charge: Professor Yoshihisa Kobayashi, Chair Professor Daniel Donoghue Professor William Fenical Professor Kyriacos Nicolaou Professor Joseph O'Connor 2009 © Thong Xuan Nguyen, 2009 All rights reserved. The Dissertation of Thong Xuan Nguyen is approved, and it is acceptable in quality and form for publication on microfilm and electronically: chair University of California, San Diego 2009 iii To my family and friends iv TABLE OF CONTENTS Signature Page ...........................................................................................................iii Dedication ..................................................................................................................iv Table of Contents .......................................................................................................v List of Abbreviations .................................................................................................viii List of Figures ............................................................................................................xi List of Schemes ..........................................................................................................xiii List of Tables .............................................................................................................xviii Acknowledgments......................................................................................................xx Vita .............................................................................................................................xxi Abstract of the Dissertation .......................................................................................xxii CHAPTER ONE 1.1 Background to the Hasubanan Alkaloids ...............................................1 1.2 Biosynthesis of Morphine ......................................................................4 1.3 Biosynthesis of Hasubanonine ...............................................................5 1.4 Chemical Conversion of the Morphinan to Hasubanan Alkaloids ........7 1.5 Ibuka's Synthesis of Hasubanonine ........................................................8 1.6 Castle's Attempted Synthesis of Hasubanonine .....................................10 1.7 Background on Acutumine ....................................................................11 1.8 Biosynthesis of Acutumine ....................................................................14 1.9 Castle's Synthesis of Acutumine ............................................................19 1.10 Sorensen Synthesis of the Propellane Core Structure of Acutumine .....22 1.11 Conclusion .............................................................................................23 1.12 Notes and References .............................................................................24 CHAPTER TWO 2.1 Retrosynthetic Analysis .........................................................................28 2.2 Synthesis of Cyclic Imine ......................................................................33 v 2.3 Alternative Path to Reduce Cyano Group ..............................................35 2.4 Diastereoselective Construction of Cis-Fused Indolidine ......................36 2.5 Initial Attempts at Dieckmann Cyclization............................................38 2.6 Diastereoselective Construction of Cis-Fused Aminonitrile .................40 2.7 Dieckmann Cyclization with Formamide of Aminonitrile ....................41 2.8 The Hydrolysis of Sterically Hindered Carboxamide ............................44 2.9 The Completion of Propellane Synthesis ...............................................48 2.10 The Synthesis of a Series of 2-Tetralone Derivatives ............................51 2.11 Conclusion .............................................................................................52 2.12 Acknowledgements ................................................................................52 2.13 Experimental ..........................................................................................54 2.13.1 Materials and Methods ..........................................................54 2.13.2 Preparative Procedures..........................................................55 2.14 Notes and References .............................................................................73 2.15 APPENDIX ONE: Spectra Relevant to Chapter Two ..........................76 2.16 APPENDIX TWO: X-Ray Crystallography Reports Relevant to Chapter Two ......................................................................................111 CHAPTER THREE 3.1 Retrosynthetic Analysis .........................................................................124 3.2 Synthesis of the 2,3-Disubstituted Cyclopentenone Foundation ...........130 3.3 Initial Attempt to Access Aldehyde .......................................................132 3.4 Synthesis of the Photocycloaddition Precursor 144 ..............................136 3.5 Photocycloaddition Reaction of Dioxinone 144 ....................................140 3.6 Synthesis of Photocycloaddition Precursor 202 ....................................141 3.7 Photocycloaddition Reaction of Cyclopentenone 202 ...........................143 3.8 Synthesis of the Photocycloaddition Precursor 147 ..............................146 3.9 Photocycloaddition Reaction of Cyclopentenone 147 ...........................148 3.10 Conclusion .............................................................................................153 3.11 Acknowledgements ................................................................................153 vi 3.12 Experimental ..........................................................................................154 3.12.1 Materials and Methods ..........................................................154 3.12.2 Preparative Procedures..........................................................155 3.13 Notes and References .............................................................................178 3.14 APPENDIX ONE: Spectra Relevant to Chapter Three ........................181 3.15 APPENDIX TWO: X-Ray Crystallography Reports Relevant to Chapter Three .....................................................................237 vii LIST OF ABBREVIATIONS Ac acetyl, acetate AcOH acetic acid i-Am iso-Amyl aq. aqueous Ar aryl Bn benzyl BOC tert-butyloxycarbonyl bp boiling point br broad n-Bu normal-butyl t-Bu tertiary-butyl calcd calculated CAN ceric ammonium nitrate cat. catalytic amount CSA camphorsulfonic acid d doublet dr diastereomeric ratio DCM dichloromethane DMAP 4-dimethylaminopyridine DMF N,N-dimethylformamide DMP dess-martin periodinane DMS dimethylsulfide DMSO dimethylsulfoxide EI electron impact equiv. (eq.) equivalent Et ethyl h hour viii Hz hertz IBX 2-iodoxybenzoic acid IC inhibitor concentration IR infrared (spectrum) KHMDS potassium bis(trimethylsilyl)amide LDA lithium diisopropylamine LHMDS lithium bis(trimethylsilyl)amide m multiplet μm micromolar Me methyl min minutes mol mole MOM methoxymethyl mp melting point Ms methanesulfonyl (mesyl) nM nanomolar NMR nuclear magnetic resonance [O] oxidation Pd/C palladium on charcoal Ph phenyl PhH benzene Piv pivaloyl PMB para-methyoxybenzyl PMP para-methyoxyphenyl ppm parts per million PPTs pyridinium para-toluenesulfonate i-Pr iso-propyl Pro proline Py pyridine Quant. quantitative ix rt room temperature s singlet t triplet TBAF tetrabutylammonium fluoride TBAI tetrabutylammonium iodide TBDPS tertiary-butyldiphenylsilyl TBS tertiary-butyldimethylsilyl Tf trifluoromethanesulfonyl TFA trifloroacetic acid TFAA trifloroacetic anhydride TFE 2,2,2-trifluoroethanol THF tetrahydrofuran TLC thin-layer chromatography TMS trimethylsilyl (p-)TsOH para-toluenesulfonic acid UV-Vis Ultraviolet-Visible ∆ heat to reflux x LIST OF FIGURES Figure 1.1.1 Structure of the hasubanan family of alkaloids 1-7 and periglaucine A (8) ...................................................................1 Figure 1.1.2 Structure of the hasubanan and morphinan skeleton ..............2 Figure 1.7.1 Structure of (-)-acutumine (38) ...............................................12 Figure 1.7.2 Structure of scopolamine (39) ................................................13 Figure 2.1.1 Structure of the hasubanan alkaloids (1-7) and the common propellane 79 ............................................................28 Figure 2.4.1 ORTEP figure of cis-acetamide 103 .......................................38 Figure 2.7.1 ORTEP figure of enamine 110 ...............................................43 13 Figure 2.9.1 Difference in the C-NMR chemical shift (ppm, in CDCl3) of cephatonine (7) with those of propellane 84 prepared by us .........................................................................51 Figure 3.1.1 Structure of (-)-hasubanonine (1) and (-)-acutumine (38) ......124 Figure 3.7.1 Difference between calculated and
Recommended publications
  • Considérations Sur L'histoire Naturelle Des Ranunculales
    Considérations sur l’histoire naturelle des Ranunculales Laetitia Carrive To cite this version: Laetitia Carrive. Considérations sur l’histoire naturelle des Ranunculales. Botanique. Université Paris-Saclay, 2019. Français. NNT : 2019SACLS177. tel-02276988 HAL Id: tel-02276988 https://tel.archives-ouvertes.fr/tel-02276988 Submitted on 3 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Considérations sur l’histoire naturelle des Ranunculales 2019SACLS177 Thèse de doctorat de l'Université Paris-Saclay : préparée à l’Université Paris-Sud NNT École doctorale n°567 : Sciences du végétal, du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Orsay, le 05 juillet 2019, par Laetitia Carrive Composition du Jury : Catherine Damerval Directrice de recherche, CNRS (– UMR 320 GQE) Présidente du jury Julien Bachelier Professeur, Freie Universität Berlin (– Institute of Biology) Rapporteur Thomas Haevermans Maître de conférences, MNHN (– UMR 7205 ISYEB) Rapporteur Jean-Yves Dubuisson Professeur, SU (–UMR 7205 ISYEB) Examinateur Sophie Nadot Professeure, U-PSud (– UMR 8079 ESE) Directrice de thèse « Le commencement sera d’admirer tout, même les choses les plus communes. Le milieu, d’écrire ce que l’on a bien vu et ce qui est d’utilité.
    [Show full text]
  • Wiechers-A-1966-Phd-Thesis.Pdf
    A STUDY IN THE BIOSYNTHESIS OF STEPHANIA ALKALOIDS A thesis submitted by ADRIAAN WIECHERS in partial fulfilment of the requirements for the degree of Doctor of Philosophy of The University of London Imperial College, LONDON, S.W.7. June, 1966. -3- ABSTRACT A new bisbenzylisoquinoline alkaloid, stebisimine, has been isolated from Stephania japonica Miers. Stebisimine has been shown by physical methods and chemical degradations to be N-nor-1,2-dehydroepistephanine. The idea that bisbenzylisoquinoline alkaloids might be formed in Nature by the oxidative phenol coupling of coclaurine derivatives has so far lacked experimental support. However, tracer studies have now shown that half of the epistephanine molecule is derived exclusively from (-)-N-methylcoclaurine. This confirms the absolute configuration of the alkaloid. Parallel feeding experiments show that racemization of the (+)-enantiomer is unimportant in this plant. Proposals have been advanced to account for the biosyntheses of bisbenzyl- isoquinoline alkaloids in general. The biosyntheses of protostephanine and hasubanonine are discussed and the results from several tracer experiments are interpreted. 4 ACKNOWLEDGEMENTS. I am deeply grateful to Professor D.H.R. Barton, F.R.S., for the privilege and the stimulation of research under his guidance and for the appointment as Visiting Lecturer in the Department of Chemistry. I an greatly indebted to Dr. Gordon W. Kirby for his sustained help and in particular for the numerous fruitful and stimulating discussions we have had. I wish to thank many members of the Imperial College staff for their assistance, particularly Dr. B.S. Waight, Mr. F. Boshoff, Mr. and Mrs. R. Young, Mr. D.
    [Show full text]
  • Unified Divergent Strategy Towards the Total Synthesis of the Three Sub
    ARTICLE https://doi.org/10.1038/s41467-020-20274-1 OPEN Unified divergent strategy towards the total synthesis of the three sub-classes of hasubanan alkaloids ✉ Guang Li1, Qian Wang1 & Jieping Zhu 1 Elegant asymmetric synthesis of hasubanan alkaloids have been developed over the past decades. However, a divergent approach leading to all three sub-classes of this family of 1234567890():,; natural products remains unknown. We report herein the realization of such an endeavor by accomplishing enantioselective total syntheses of four representative members. The synth- esis is characterized by catalytic enantioselective construction of the tricyclic compounds from which three different intramolecular C-N bond forming processes leading to three topologically different hasubanan alkaloids are developed. An aza-Michael addition is used for the construction of the aza-[4.4.3]-propellane structure of (-)-cepharamine, whereas an oxidation/double deprotection/intramolecular hemiaminal forming sequence is developed to forge the bridged 6/6/6/6 tetracycle of (-)-cepharatines A and C and a domino bromina- tion/double deprotection/cyclization sequence allows the build-up of the 6/6/5/5 fused tetracyclic structure of (−)-sinoracutine. 1 Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC- ✉ LSPN, BCH5304, 1015 Lausanne, Switzerland. email: jieping.zhu@epfl.ch NATURE COMMUNICATIONS | (2021) 12:36 | https://doi.org/10.1038/s41467-020-20274-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20274-1 he bridged tetracycle A, particularly its enantiomer ent-A, total synthesis of all three sub-types of hasubanan alkaloids is a core structure of morphinan alkaloids such as (B, C, D,Fig.1a) has been reported to date.
    [Show full text]
  • Alkaloids.Tarek Kakhia.Pdf
    ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER ALKALOIDS & ALKALOIDS PLANTS By TAREK ISMAIL KAKHIA 1 2 INDEX Itam Page Itam No 1 - Alkaloids : 1 Alkaloids 2 Atropine 3 Caffeine 4 Cocaine 5 Codaine 6 Heroine 7 Lidocaine 8 Morphin 9 Nicotine 10 Papaverine 11 Solanine 2 - Alkaliod Plants 1 Belladonna 2 Cannabis 3 Cannabis ( Drug ) 4 Cannabis ( Altivation ) 5 Coca 6 Coffee 7 Datura Stramonium 8 Datura 9 Hashish 10 Khat 11 Opium 12 Opium Poppy 3 13 Tea 14 Tobacco 15 Yerba Mate 3 - Alkaliod Plants Time Line 1 Time Line of Cannabis 1 2 Time Line of Cannabis 2 3 Time Line of Coca 4 Time Line of Coffee 5 Time Line of Datura 6 Time Line of Hashish 7 Time Line of Khat 8 Time Line of Poppy & Opium 9 Time Line of Tea 10 Time Line of Tobacco 11 Time Line of Yerba Mat 12 Time Line of 4 - Extension and Supplements 1 Night Shade Alkaloid Toxins Atropine , Scopolamine and Solanine 2 Hyoscyamus Niger 3 Nerium Oleander 4 PART – 1 ALKALOIDS 5 6 Alkaloid Chemical structure of ephedrine, a phenethylamine alkaloid Contents : 1 Introduction 2 Alkaloid Classifications 3 Physicochemical Properties 4 Category : Alkaloids 1 – Introduction : Alkaloids are naturally occurring chemical compounds containing basic nitrogen atoms . The name derives from the word alkaline and was used to describe any nitrogen - containing base. Alkaloids are produced by a large variety of organisms, including bacteria, fungi, plants, and animals and are part of the group of natural products (also called secondary metabolites ) . Many alkaloids can be purified from crude extracts by acid - base extraction.
    [Show full text]
  • Cepharamine and Cephalotaxine Group Meeting Christos Mitsos 6/8/2005
    Cepharamine and cephalotaxine Group Meeting Christos Mitsos 6/8/2005 Isolation and/or structure determination: OH MeO NMe Cepharamine: Tomita Tetrahedron Lett. 1966, 6229. Hasubanonine: Tomita Chem. Pharm. O Bull. 1965, 13, 538. Metaphanine: Tomita Tetrahedron Lett. 1964, 3605. Bisaknadinine: Kunitomo Heterocycles 1980, 14, 175. Stephamiersine: Watanabe Tetrahedron Lett. 1973, OMe 4263. Stephavanine: Kupchan J. Am. Chem. Soc. 1970, 92, 5756. Stephisoferuline: Kupchan Tetrahedron Lett. 1970, 4975. Stephabenine: Chem. Pharm. Bull. 1983, 31, 2547. (-)-Cepharamine (Stephania cepharantha) Total syntheses reported: Racemic: Cepharamine, hasubanonine, aknadilactam, metaphanine. Hasubanan alkaloids: Enantioselective: (+)-cepharamine (unnatural). X OMe NMe MeO The structure of hasubanan OR R1O 2 NR3 alkaloids resembles that of O O morphinan alkaloids, OMe OH OH comprising the same H O OH OMe phenanthrene-like skeleton, but O with the nitrogen of the side OMe Metaphanine O OH aminoethyl chain attached on 13 C-14 (phenanthrene 13 R1=R2=R3=Me, X=H2, Hasubanonine numbering) and without the oxo R1=H, R2=R3=Me, X=H2: Homostephanoline X OMe bridge of morphine. Most N R1=R3=Me, R2=H, X=H2: Aknadinine important: the stereochemistry Me NMe R1,R2=CH2, R3=Me, X=H2: Delavanine MeO OMe NMe at C-13 is the opposite of the R1=Me, R2=R3=H, X=H2: Aknadicine morphinan alkaloids and Morphine R1=R3=Me, R2=H, X=O: Aknadilactam (-)-Cepharamine OMe hasubanans do not display analgesic properties. H O OR NMe R=Me, X=H2: Stephamiersine O R=Me, X=O: Oxostephamiersine Conversion of morphinan to hasubanan skeleton: OH OMe R=H, X=H2: Stephasunoline MeO OMe MeO MeO MeO O OMe MeO O OMe AcOAg MeO O OH NMe I AcOH OMe R MeO O OH OMe N H OMe Me O O NMe OAc NMe OMe R=Ph: Stephabenine G.
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Progress Towards the Total Synthesis of the Hasubanan Alkaloids and Acutumine A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Thong Xuan Nguyen Committee in charge: Professor Yoshihisa Kobayashi, Chair Professor Daniel Donoghue Professor William Fenical Professor Kyriacos Nicolaou Professor Joseph O'Connor 2009 © Thong Xuan Nguyen, 2009 All rights reserved. The Dissertation of Thong Xuan Nguyen is approved, and it is acceptable in quality and form for publication on microfilm and electronically: chair University of California, San Diego 2009 iii To my family and friends iv TABLE OF CONTENTS Signature Page ...........................................................................................................iii Dedication ..................................................................................................................iv Table of Contents .......................................................................................................v List of Abbreviations .................................................................................................viii List of Figures ............................................................................................................xi List of Schemes ..........................................................................................................xiii List of Tables .............................................................................................................xviii
    [Show full text]