Food Technology II

Total Page:16

File Type:pdf, Size:1020Kb

Food Technology II Food Technology II Amit Patel Devraja H. C. Prateek Sharma R. R. B. Singh FOOD TECHNOLOGY - II Amit Patel Dairy Technology Department, SMC College of Dairy Sciences, AAU, Anand Devraja H. C., Prateek Sharma & R. R. B. Singh Dairy Technology Division NDRI, Karnal-132001 Index Module 1: Cereal grains, legumes and oilseeds Lesson 1 Introduction to cereal grains, legumes and oilseeds: Structure 5-15 and composition of cereal grains, legumes and oilseeds Module 2: Cereal processsing Lesson 2 Rice milling and parboiling: Rice quality and grading standards 16-22 Lesson 3 Processed rice products and by-products 23-26 Lesson 4 Milling of wheat 27-32 Lesson 5 Criteria of wheat flour quality, Improvers for wheat flour, types 33-39 of wheat flour Lesson 6 Corn: Classification, dry milling and wet milling 40-42 Lesson 7 Barley: Classification, malting and processing 43-48 Lesson 8 Millets: Types and processing 49-52 Lesson 9 Breakfast cereals: Classification and technologies 53-59 Lesson 10 Malted milk foods 60-65 Module 3: Bakery and snack foods Lesson 11 Technology of bread making 66-75 Lesson 12 Technology of biscuit making 76-83 Lesson 13 Technology of cake making 84-87 Lesson 14 Technology of pasta products 88-92 Module 4: Pulse processing Lesson 15 Methods of pulse milling – Wet and dry method, Domestic and 93-100 commercial milling Lesson 16 Roasted, germinated, fermented and canned legume products 101-103 Module 5: Oilseed processing Lesson 17 Dehulling and extraction of oil from oilseeds, Processing of 104-111 vegetable oil, Processing and utilization of oilseed meals Lesson 18 Processing of soybean and other oilseeds; dairy analogues 112-117 Module 6: Meat and poultry processing Lesson 19 Present status and prospects of meat, poultry, egg and fish 118-122 production in India Lesson 20 Pre-slaughter handling and inspection of animals 123-128 Lesson 21 Slaughtering techniques and post-mortem inspections 129-139 Lesson 22 Rigor mortis: Biochemical and histological changes 140-147 Lesson 23 Processing of meat 148-161 Lesson 24 Poultry meat and its processing 162-167 Lesson 25 Hygiene and sanitation in meat and poultry industry 168-179 Module 7: Egg and egg processing Lesson 26 Egg: Structure, composition and quality 180-184 Lesson 27 Processing of egg 185-192 Module 8: Fish and its processing Lesson 28 Fish harvesting, handling and transportation; classification 193-200 Lesson 29 Processing and preservation of fish; value added fishery 201-209 products References 210 Food Technology-II Module 1. Cereal grains, legumes and oilseeds Lesson 1 INTRODUCTION TO CEREAL GRAINS, LEGUMES AND OILSEEDS, STRUCTURE AND COMPOSITION OF CEREAL GRAINS, LEGUMES AND OILSEEDS 1.1 Introduction India has reached to a level of self-sufficiency in the production of cereals, pulses and oilseeds after the green revolution. Cereals are plants which yield edible grains and includes rice, wheat, corn, barley, and oats. Cereal grains are the fruit of plants belonging to the grass family (Gramineae). Cereal grains provide the world with majority of its food calories and about half of its protein. They are also good source of micronutrients such as calcium, iron and vitamins of group B. Cereals are staples and are consumed in large quantities by majority of population in the world either directly or in modified form as major items of diet such as flour, bran and numerous additional ingredients used in the manufacture of other foods. Asia, America, and Europe produce more than 80 percent of the world’s cereal grains. Cereals are easy to store because of low moisture content, easy to handle and providing variety to the diet. The principle cereal grains grown in India are wheat, rice, corn, sorghum and barley. Legumes are next to cereals as an important source of proteins. They are flowering plants having pods which contain bean or peas. There are basically two groups of legumes. First is high-protein high-oil group like soybean, groundnut, lupine, etc. which are mainly used for processing and contains high protein (~ 35%) and oil content (15- 45%). The second group comprises the moderate- protein low-oil types like cowpea, gram, pea, lentil etc. India is one of the largest pulse growing countries in the World. Different pulses grown in India are chickpea (bengal gram/chana), pigeon pea (tur/arhar), green gram (moong), black gram (urad), lentils (masur). Oilseeds have become an increasingly important agriculture commodity, with a steady increase in annual production worldwide. Oilseeds are seeds which contain high oil content and are widely grown as a source of edible oil. Major oilseeds grown in India are groundnut, cottonseed, mustard, rapeseed, soybean, sunflower and sesame seed. The coconut (copra) is also an important oilseed. Cereal grains are not only low in protein but also deficient in certain essential amino acids, especially lysine. Legumes as well as many oilseeds are rich in lysine, though relatively poor in methionine. Edible oilseed meals obtained from oilseeds are rich in proteins and have been used to improve the nutritional www.AgriMoon.Com 5 Food Technology-II properties of cereal products such as infant food and food for school going children in most of the countries in world. 1.2 Cereal Grains 1.2.1 Rice Rice (Oryza sativa, Linn.) crop originated in Asia and has been a staple food there since the Ice Age in the North. The geographical site of original rice domestication is yet not sure. But according to a general consensus, domestication occurred at three places – India, Indonesia and China – thereby giving rise to three races of rice – Indica, Javonica and Sinica (also known as Japonica), respectively. Actual rice grains and husk have been excavated in India that were more than 4500 years old and in China more than 5000 years. According to ancient Greek writers, rice penetrated Europe around 3000 B.C., having been brought from India by Alexander the Great. 1.2.2 Wheat Historic documents confirm that wheat (Triticum aestivum, Triticum durum) is the earliest field crop used for human food processing. The cultivation of wheat reaches far back into history as it was predominat source of food for Human. The precise origin of the wheat cultivation is unclear, but it is thought that man has been cultivating and processing the wheat for at least 12,000 – 17,000 years. 1.2.3 Corn Corn or Maize (Zea mays, L) is native to the America. Corn originated in Mexico, evolving from the wild grass Teosinte. Archeological evidence suggests that corn was domesticated and grown as early as 5000 B.C. in Mexico. Following Columbus’s discovery of America, corn was transplanted to Spain from where it quickly spread across Europe, Africa and Asia. 1.2.4 Barley Barley (Hardeum vulgare L.) is among the most ancient of the cereal crops. The original area of cultivation has been reported to be in the Fertile Crescent of the Middle East, in present day Lebanon, Iran, Iraq, and Turkey. There is now considerable evidence that barley was under cultivation in India and China considerably later then in Middle East. Barley played an important role in ancient Greek culture as a staple bread–making grain, as well as an important food for athletes, who attributed much of their strength to their barley–containing training diets. Gladiators were known as hordearii, which means “eaters of barley”. In almost every culture through the ages, barley foods are described as having almost mystical properties, and barley is often referred to as the “king of grains”. www.AgriMoon.Com 6 Food Technology-II 1.3 Structure of Cereal Grains Cereal grains are the fruit of plants belonging to the grass family (Gramineae). Botanically, cereal grains are a ‘dry’ fruit called a caryopsis (Fig. 1.1). The caryopsis fruit has a thin, dry wall which is fused together with the seed coat. Kernel structure is important with respect to minimizing damage during grain harvest, drying, handling, storage, milling, and germination and in enhancing nutritional value. There are a few important structural features that the cereal grains have in common. All of the cereal grains are plant seeds and contain three distinct anatomical portions – a large centrally located starch endosperm, which also is rich in protein, protective outer layers such as hull and bran, and an embryo or germ. The seed portion of cereals consists of numerous components which basically include three parts: a seed coat or testa (bran), storage organ or nutritive reserve for the seed (endosperm), and a miniature plant or germ. The fruit tissue consists of a layer of epidermis and several thin inner layers a few cells thick. The aleurone layer which is just below the seed coat, is only a few cells thick, but is rich in oil, minerals, protein and vitamins. Starch and protein are located in the endosperm which represents the bulk of the grain and is sometimes the only part of the cereal consumed. Starch is arranged in the form of sub-cellular structures called granules that are embedded in a matrix of protein. The developing endosperm contains protein bodies which become a continuous phase as the grain matures. There is generally a gradient of more protein and less starch per cell from the outer to the inner region of the endosperm. The diameter, shape, size distribution and other characteristics of starch granules vary with different cereals. Starch granules range in size from 3-8 µm in rice; 2-30 µm in corn, and 2-55 µm in wheat. Reserve proteins in the endosperm are in the form of smaller ‘protein bodies’ that range in size from 2-6 µm that become disordered and adhere to the starch granules in the mature grain of species like wheat.
Recommended publications
  • Unit 15 Coarse Grains
    UNIT 15 COARSE GRAINS - VALUE ADDED PRODUCTS Structure 15.0 Objectives 15.1 Introduction .15.2 Meaning of ValueAddition 15.3 Value Added Products 15.4 Factors Contributing to Quality Assurance 15.5 Bureau of Indian Standards 15.6 Export Promotion 15.7 PFA 15.8 Consumer Protection Act 15.9 Let Us Sum Up 15.10 Key Words 15.11 Answers to Check Your Progress Exercise 15.12 Some Useful References 15.0 OBJECTIVES After reading this unit you should be able to • know the pattern of consumption of maize and other coarse grains. ,. understand the meaning of value addition and have knowledge of various value added products . ., learn various processing methodologies for the production of value added products. • have knowledge of packaging requirements and regulatory agencies for production of value added products. 15.1 INTRODUCTION You have learnt from the previous lessons that maize, jowar, bajra, ragi and other small millets (kodo, little, foxtail and barnyard millets) are generally termed as "Coarse grains". These grains occupy a very important place in the diets, particularly of the poorer sections of society. They also contribute significantly to the feed "'-~1 i I '?fl ;!!. I I C') o i rfl..!: or-, I I o U Seed N ~ '0 <tI o r-fFo~dli Starch I '0- o .: ,I 5% (j)(f) LI. Feed Q) .- I 5% L.L.(.j Feedi'l 40% I '!IDJ'Starch F :j Food I IIDJSeed,: I 50% jlaAICOh011: I i il L... ----- ~ (a) Maize. (b) Jowar Fig. I: Pattern of utilization of Maize and Jowar in India 35 Milling of Maize requirement of cattle and poultry in the country.
    [Show full text]
  • Gluten Free Grains
    Gluten-free Grains A demand-and-supply analysis of prospects for the Australian health grains industry A report for the Rural Industries Research and Development Corporation by Grant Vinning and Greg McMahon Asian Markets Research Pty Ltd September 2006 RIRDC publication no. 05/011 RIRDC project no. AMR–10A © 2006 Rural Industries Research and Development Corporation All rights reserved ISBN 1 74151 110 0 ISSN 1440-6845 Gluten-free Grains: a demand-and-supply analysis of prospects for the Australian grains industry Publication no. 05/011 Project no. AMR–10A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable industries. The information should not be relied upon for the purpose of a particular matter. Specialist and/or appropriate legal advice should be obtained before any action or decision is taken on the basis of any material in this document. The Commonwealth of Australia, the Rural Industries Research and Development Corporation, and the authors or contributors do not assume liability of any kind whatsoever resulting from any person’s use of or reliance on the content of this document. This publication is copyright. However, RIRDC encourages wide dissemination of its research results, providing the Corporation is clearly acknowledged. For any inquiries concerning reproduction, telephone the Publications Manager on 02 6272 3186. Researcher contact details Grant Vinning Greg McMahon Asian Markets Research Asian Markets Research 22 Kersley Road 22 Kersley Road KENMORE QLD 4069 KENMORE QLD 4069 Phone: 07 3378 0042 Phone: 07 3378 0042 Email: [email protected] Email: [email protected] In submitting this report, the researchers have agreed to RIRDC publishing this material in its edited form.
    [Show full text]
  • Effect of Pre-Treatment on Puffing of Finger Millet, Bengal Gram and Maize and Their Flours
    RESEARCH PAPER International Journal of Agricultural Engineering | Volume 8 | Issue 2 | October, 2015 | 248-254 e ISSN–0976–7223 Visit us : www.researchjournal.co.in DOI: 10.15740/HAS/IJAE/8.2/248-254 Effect of pre-treatment on puffing of finger millet, bengal gram and maize and their flours JAYA PRAKASH RAYA, B. ASHWIN KUMAR, D. RAVINDRA BABU AND A. SRAVANTHI Received : 27.08.2015; Revised : 28.08.2015; Accepted : 26.09.2015 See end of the Paper for ABSTRACT : The effect of pretreatments on puffing of finger millet, bengal gram and maize were authors’ affiliation studied. The grains were pre – treated with water and citric acid solution (1% concentration). The Correspondence to : puffed grains were evaluated for puffing yield, bulk density and angle of repose. All these three JAYA PRAKASH RAYA parameters of the puffed grains pre-treated with water. The yield (%) of corn varied to an higher Department Agricultural extent for about 16 per cent for puffed grains pre-treated with water than pre-treated citric acid. Engineering, Farm Implements and Machinery There was almost no effect of pre-treatments of bengal gram on the puffing of grains. The bulk Scheme, Agricultural Research density of citric acid pre-treated corn was found to be 0.659 g/cc that is less than bulk density of Institutes (A.N.G.R.A.U.), water pre-treated corn puffed corn. The angle of repose of bengal gram that is pre-treated with HYDERABAD (A.P.) INDIA 0 0 Email : [email protected] water was 32.43 and that of citric acid pre-treated was found to be 31.51 .
    [Show full text]
  • Manufacturing Technology of Ready-To-Eat Cereals
    This chapter is taken from the book Breakfast Cereals and How They Are Made, Second Edition which is available in print and online from AACC International PRESS. Chapter 2 Manufacturing Technology ofReady-to-Eat Cereals ROBERT B. FAST Ready-to-eat (RTE) breakfast cereals are processed grain formula­ tions suitable for human consumption without further cooking in the home. They are relatively shelf-stable, lightweight, and convenient to ship and store. They are made primarily from corn, wheat, oats, or rice, in about that order of the quantities produced, usually with added flavor and fortifying ingredients. Hot breakfast cereals, on the other hand, are made primarily from oats or wheat; those made from corn or rice are of minor importance, being produced in relatively small quantities. The original hot cereals required cooking in the home before they were ready for consumption, but now some varieties are preprocessed so that they are ready for consumption with the addition of either hot water or milk to the cereal in the bowl. RTE cereals originated in the United States in the latter part of the nineteenth century. At first developed and used as healthful vegetar­ ian foods in a clinical context, they soon caught on with the general population, and an entire industry was thereby spawned (Fast, 1999). Their processing typically involves first cooking the grain with flavor materials and sweeteners. Sometimes the more heat-stable nutri­ tional fortifying agents are added before cooking. Two general cooking methods are employed in the industry-direct steam injection into the grain mass in rotating batch vessels and continuous extrusion cook­ ing.
    [Show full text]
  • Murmura Manufacturing Unit
    MURMURA MANUFACTURING UNIT 1. INTRODUCTION: Puffed Rice or Murmura is one of the very popular fast food of the Country. The paddy is used after gelatinization of starch which will give a better puffing. The parboiled rice is sundried and dehisced and polished. Then the same is soaked in the brine solution for 6 to 7 hours and drained completely and dried in sun light for about one hour for removing the excess moisture. Later the rice is fried at 110 degree celcious and cooled and packed. Puffed rice is a type of puffed grain from the Indian subcontinent, made from rice, commonly used in breakfast cereal or snack foods, and served as a popular street food in India, Bangladesh and Nepal. It is usually made by heating rice kernels under high pressure in the presence of steam, though the method of manufacture varies widely. It is widely consumed in countries like India. 2. PRODUCT & ITS APPLICATION: Compared to other ready-to-eat cereals, puffed rice is very low in calories. A 3/4- cup serving of a bran flake cereal has 98 calories, and swapping out your bran flakes for puffed rice can save you 44 calories per serving. If you're trying to lose weight, saving an extra 44 calories a day may help you lose 1 pound every 2 1/2 months. While that may seem like a slow way to lose weight, every little bit helps. Puffed rice, especially the one made from white rice, does not offer any major health benefit. White rice is produced by removing the bran layer, along with the germ.
    [Show full text]
  • View Acrylamide and Furan Summary Report
    Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 Web: http://www.paslabs.co.uk/ Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2017 and November 2017 A report prepared for the Food Standards Agency March 2018 Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 Web: http://www.paslabs.co.uk/ Report No: C039 Authors: Colin G. Hamlet, Li Liang, Ben Baxter, Donika Apostilova Date: First draft: March 2018 Final version: May 2018 Sponsor: Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX Sponsors Project Title: Survey of Acrylamide and Furans in UK Retail Products: Summary Report for Samples Purchased Between January 2017 and November 2017 Sponsors Project reference No: FS102075 Distribution: 1. 2. 3. 4. 5. © Crown Copyright 2018 This report has been produced by Premier Analytical Services under a contract placed by the Food Standards Agency (the Agency). The views expressed herein are not necessarily those of the Agency. Premier Analytical Services warrants that all reasonable skill and care has been used in preparing this report. Notwithstanding this warranty, Premier Analytical Services shall not be under any liability for loss of profit, business, revenues or any special indirect or consequential damage of any nature whatsoever or loss of anticipated saving or for any increased costs sustained by the client or his or her servants or agents arising in any way whether directly or indirectly as a result of reliance on this report or of any error or defect in this report.
    [Show full text]
  • Popping and Puffing of Cereal Grains: a Review
    JOURNAL OF GRAIN PROCESSING AND STORAGE Journal homepage: www.jakraya.com/journal/jgps REVIEW ARTICLE Popping and Puffing of Cereal Grains: A Review Gayatri Mishra a*, D.C. Joshi b and Brajesh Kumar Panda a aDepartment of Agricultural and Food Engineering, IIT, Kharagpur, West Bengal, India. bCollege of Food Processing Technology and Bio-Energy, AAU, Anand-388110, Gujarat, India. Abstract Popping is a simultaneous starch gelatinization and expansion process, during which grains are exposed to high temperatures for short time. During this process, super heated vapour produced inside the grains *Corresponding Author: by instantaneous heating, cooks the grain and expands the endosperm suddenly, breaking out the outer skin. Puffing is a similar process; differ Gayatri Mishra from popping as a process in which controlled expansion of kernel is carried out, while the vapour pressure escapes through the micropores of Email: [email protected] the grain structure due to high pressure or thermal gradient. Popping and puffing imparts acceptable taste and desirable aroma to the snacks. There are different methods of popping/puffing used viz., conventional method of dry heat, sand and salt treated, hot air popping, gun puffing, popping in hot Received: 17/07/2014 oil and by microwave heating. Though a wide range of cereals and millets such as rice, wheat, corn, sorghum, ragi, foxtail millet are used for Revised: 19/10/2014 popping/puffing; only few of them pop well. The reason behind this may be Accepted: 25/10/2014 the factors which influence popping qualities of cereals, such as season, varietal difference, grain characteristics such as moisture content, composition of grain, physical characteristics, types of endosperm, and also the method of popping.
    [Show full text]
  • Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2017 and November 2017
    Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 Web: http://www.paslabs.co.uk/ Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2017 and November 2017 A report prepared for the Food Standards Agency March 2018 Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 Web: http://www.paslabs.co.uk/ Report No: C039 Authors: Colin G. Hamlet, Li Liang, Ben Baxter, Donika Apostilova Date: First draft: March 2018 Final version: May 2018 Sponsor: Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX Sponsors Project Title: Survey of Acrylamide and Furans in UK Retail Products: Summary Report for Samples Purchased Between January 2017 and November 2017 Sponsors Project reference No: FS102075 Distribution: 1. 2. 3. 4. 5. © Crown Copyright 2018 This report has been produced by Premier Analytical Services under a contract placed by the Food Standards Agency (the Agency). The views expressed herein are not necessarily those of the Agency. Premier Analytical Services warrants that all reasonable skill and care has been used in preparing this report. Notwithstanding this warranty, Premier Analytical Services shall not be under any liability for loss of profit, business, revenues or any special indirect or consequential damage of any nature whatsoever or loss of anticipated saving or for any increased costs sustained by the client or his or her servants or agents arising in any way whether directly or indirectly as a result of reliance on this report or of any error or defect in this report.
    [Show full text]
  • PUFFED/ FLAKED RICE Prepared by Indian Institute of Food
    Model Detailed Project Report PUFFED/ FLAKED RICE Under the Formalization of Micro Food Processing Enterprises Scheme (Ministry of Food Processing Industries, Government of India) Prepared by Indian Institute of Food Processing Technology (IIFPT) Pudukkottai Road, Thanjavur, Tamil Nadu Ministry of Food Processing Industries, Government of India TABLE OF CONTENTS Model Detailed Project Report ........................................................................... 1 1 Executive SuMMary .................................................................................... 4 2 Objective Of The Project ............................................................................. 6 3 Project Profile .............................................................................................. 7 4 General overview of Rice production, clusters, phM and value addition in india ...................................................................................................................... 8 4.1 INTRODUCTION ......................................................................................................... 8 4.2 Origin, Distributin And Production Of Rice ................................................................. 8 4.3 Varities ....................................................................................................................... 9 4.4 Health Henefits And Nutritional Importance ............................................................. 10 4.5 Cultivation, Bearing And Post-Harvest Managements ............................................
    [Show full text]
  • View Survey of Acrylamide and Furans in UK Retail Products
    Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 www.paslabs.co.uk Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2018 and November 2018 A report prepared for the Food Standards Agency March 2019 Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 www.paslabs.co.uk Report No: C040 Authors: Colin G. Hamlet, Li Liang, Ben Baxter, Donika Apostilova, Rozeela Ali Date: First draft: March 2019 Final version: October 2019 Sponsor: Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX Sponsors Project Title: Survey of Acrylamide and Furans in UK Retail Products: Summary Report for Samples Purchased Between January 2018 and November 2018 Sponsors Project reference No: FS102075 Distribution: 1. 2. 3. 4. 5. © Crown Copyright 2019 This report has been produced by Premier Analytical Services under a contract placed by the Food Standards Agency (the Agency). The views expressed herein are not necessarily those of the Agency. Premier Analytical Services warrants that all reasonable skill and care has been used in preparing this report. Notwithstanding this warranty, Premier Analytical Services shall not be under any liability for loss of profit, business, revenues or any special indirect or consequential damage of any nature whatsoever or loss of anticipated saving or for any increased costs sustained by the client or his or her servants or agents arising in any way whether directly or indirectly as a result of reliance on this report or of any error or defect in this report.
    [Show full text]
  • Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2018 and November 2018
    Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 www.paslabs.co.uk Survey of Acrylamide and Furans in UK Retail Products: Results for Samples Purchased Between January 2018 and November 2018 A report prepared for the Food Standards Agency March 2019 Premier Analytical Services The Lord Rank Centre Lincoln Road High Wycombe Buckinghamshire HP12 3QS United Kingdom Tel: +44 (0)1494 526191 Fax: +44 (0)1494 428060 www.paslabs.co.uk Report No: C040 Authors: Colin G. Hamlet, Li Liang, Ben Baxter, Donika Apostilova, Rozeela Ali Date: First draft: March 2019 Final version: October 2019 Sponsor: Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX Sponsors Project Title: Survey of Acrylamide and Furans in UK Retail Products: Summary Report for Samples Purchased Between January 2018 and November 2018 Sponsors Project reference No: FS102075 Distribution: 1. 2. 3. 4. 5. © Crown Copyright 2019 This report has been produced by Premier Analytical Services under a contract placed by the Food Standards Agency (the Agency). The views expressed herein are not necessarily those of the Agency. Premier Analytical Services warrants that all reasonable skill and care has been used in preparing this report. Notwithstanding this warranty, Premier Analytical Services shall not be under any liability for loss of profit, business, revenues or any special indirect or consequential damage of any nature whatsoever or loss of anticipated saving or for any increased costs sustained by the client or his or her servants or agents arising in any way whether directly or indirectly as a result of reliance on this report or of any error or defect in this report.
    [Show full text]
  • Labeling Study Report Cambodia Key Messages
    ASSESSMENT AND RESEARCH IN CHILD FEEDING (ARCH): LABELING STUDY REPORT CAMBODIA Report on commercially produced complementary foods and selected commercially produced foods not specifically marketed for but commonly consumed by infants and young children KEY MESSAGES 1. Nutrition is central to strengthening the health and development of individuals and nations. The 1,000 days of a mother’s pregnancy until her child’s 2nd birthday is a particularly critical window of opportunity during which the right nutrition gives children a healthy start at life. • In Cambodia 40% of children under-five years of age are stunted, never reaching their full cognitive or physical development. • Cambodia has not yet joined the SUN movement but does have a National Policy on Infant and Young Child Feeding and a Communication for Behavioural Impact (COMBI) Campaign to Promote Complementary Feeding in Cambodia (2011-2013) that aim at improving the feeding practices and nutritional status of Cambodian infants and young children. 2. Optimal feeding leads to children reaching their full potential. Exclusive breastfeeding during the first six months of life, with continued breastfeeding until 2 years of age or beyond, together with the addition of safe, appropriate complementary foods from 6 months provides the best nutrition for a young child. To protect these optimal feeding practices, the marketing practices of all products aimed at infants and young children, not only breast-milk substitutes, are under the spotlight. • In Cambodia, early initiation of breastfeeding is 66%, exclusive breastfeeding at 6 months 74% and continued breastfeeding at the age of two years 43%. • In Cambodia complementary feeding is initiated between 6-8 months for 88% of infants.
    [Show full text]