Chemical, Morphological, and Thermogravimetric of Terminalia Catappa Linn Orquídea Vasconcelos Dos SANTOS1*, Natasha Dantas LORENZO2, Suzana Caetano Da Silva LANNES2

Total Page:16

File Type:pdf, Size:1020Kb

Chemical, Morphological, and Thermogravimetric of Terminalia Catappa Linn Orquídea Vasconcelos Dos SANTOS1*, Natasha Dantas LORENZO2, Suzana Caetano Da Silva LANNES2 a Food Science and Technology ISSN 0101-2061 DDOI 10.1590/1678-457X.0090 Chemical, morphological, and thermogravimetric of Terminalia catappa Linn Drquídea Vasconcelos dos SANTDS1*, Natasha Dantas LDRENZD2, Suzana Caetano da Silva LANNES2 Abstract The objective of this study is to evaluate the chemical composition, morphology, and the thermogravimetric behavior of the pulp of Terminalia catappa, also known as tropical almond. The analytical results show, based mainly on its lipid content, that this fruit has a considerable energy value. Its fiber content contributes to enhance the functional properties of the fruit. Morphological characteristics show a spongy-like structure with dispersion of starch granules and high concentration of fiber bundles, confirming the results of the chemical composition analysis. The thermogravimetric behavior exhibited by this fruit pulp when submitted to progressive temperature increase under dynamic air atmosphere shows that this raw material has great potential for industrial use due to its high absorption rate of water soluble and/or lipid-based compounds, allowing its use as a dietary complement or supplement ingredient in food products. Keywords: thermogravimetric; micrographs; fruits. Practical Application: The possibility of using this raw material as a dietary enrichment was evidenced by its functional and technological properties. The spongy aspect of the post-extraction material shows its high water and oil absorption capacity, confirming its suitability for use in the food industry. 1 Introduction Terminalia catappa Linn is a member of the Combretaceae These by-products can have technological applications such family, which comprises approximately 600 species. However, as in the preparation of baked goods (breads, cakes, pastries, the two most common genera are Combretum and Terminalia, biscuits, cookies, cereal or protein bars, and pasta in general). each consisting of about 250 species and wide applicability in the These applications have led to the deepening of studies to traditional African, Asian, and Indian medicine (Fyhrquist et al., investigate their potential functional properties. Therefore, 2002; Saleem et al., 2002; Martini et al., 2004). Terminalia catappa this fruit can arouse more interest of pharmaceutical, chemical, is a drupe with a fleshy pulp. During maturation, it changes color oleochemical, and other industries (Teixeira, 2010; Sousa et al., from green to dark purplish-red; it has an oleaginous kernel 2011; Santos et al., 2012, 2013). coated with a thin film (Thomson & Evans, 2006; Ivani et al., Some studies on the biological properties of Terminalia 2008; González-Mendoza et al., 2009). catappa Linn, have been carried out in the area of human health, Tropical almonds or Terminalia catappa Linn are edible and its antioxidant (Lin et al., 2001; Ko et al., 2002; Chyau et al., 2002, 2006) anti-inflammatory (Fan et al., 2004), antitumoral fruits used in foods, especially for children and birds and (Chen et al., 2000; Liu et al., 1996), antiviral (Tanaka et al., other animals. Its kernels, which are also edible, are a source of 1986), and antidiabetic (Nagappa et al., 2003) potential have proteins and lipids (Cavalcante et al., 1986; Matos et al., 1992; been described. Ivani et al., 2008). Its macronutrients, such as carbohydrates, proteins, and lipids, Traditionally, only the fallen leaves of Terminalia catappa can help the body in the daily diet by supplying energy and basic Linn are boiled or brewed as a drink (tea). These leaves have substances for the growth and maintenance of body functions; been used in folk medicine as an antidiarrheal and antipyretic lipids and proteins are the most significant macronutrients in India, Philippines, and Malaysia. In Taiwan, it has been used present in Terminalia catappa kernel and pulp of (Lima, 2012). to prevent liver tumors and to treat hepatitis. Its micronutrients, on the other hand, help regulate In terms of its technological use, separating the edible parts of human functions (Roach, 2009) and can be classified as: this fruit increase its use in various products as a raw material in electrolytes (potassium, chloride, and sodium), macro the enrichment and/or supplementation of existing formulations minerals (calcium, phosphorus, magnesium, and sulfur) in the food industry. The use of appropriate technologies can trace minerals or trace elements (iron, zinc, copper, iodine, promote the separation of this fruit’s fractions and process them chromium, selenium, manganese, molybdenum, and nickel) into flour, pulp, and oils. and ultratrace elements (fluorine, cobalt, silicon, vanadium, Received 26 Nov., 2015 Accepted 12 Jan., 2016 1Faculdade de Nutrição – FANUT, Instituto de Ciências da Saúde – ICS, Universidade Federal do Pará – UFPA, Belém, PA, Brasil 2Departamento de Tecnologia Bioquímico-Farmacêutica, Universidade de São Paulo – USP, São Paulo, SP, Brasil *Corresponding author: [email protected] Food Sci. Technol, Campinas, 36(1): 151-158, Jan.-Mar. 2016 151 Morphology, the thermogravimetric of Terminalia catappa tin, lead, mercury, boron, lithium, strontium, cadmium, and 2.4 Biometric analysis arsenic) (Manganaro, 2008). The ultratrace and trace elements The fruits were randomly selected and the cutting point are essential for the proper body function and are required was chosen considering the presence of mechanical injury or in small amounts (Roach, 2009). uniformities that prevented the accurate measurements of their The presence of phenolic compounds - aromatic compounds diameters. Subsequently, they were weighed using an analytical resulting from the secondary metabolism of plants - was balance (QUIMIS- Bioprecisa electronic balance FA-2104N), also identified (Kim et al., 2003). These compounds have an and the largest and smallest diameters were measured using a adaptive protective role in the defense mechanism, and their caliper (VDNDER). importance has been demonstrated in several studies, particularly flavonols, anthocyanins, and antoxantins, confirming their 2.5. Physicochemical characterization of tropical almonds ability to capture free radicals thus preventing cardiovascular Physicochemical properties of pulp and peel and circulatory diseases, cancer, diabetes, and Alzheimer’s (Wang & Mazza, 2002; Stoclet et al., 2004; Abdille et al., 2005; Khatoon et al., 2008). • Water activity: obtained by direct measurement using an AquaLab thermo hygrometer Series 3TE (DECAGDN) According to Nagappa et al. (2003), the presence of with internal temperature control of 25 °C; phenolic compounds indicates that the fruit has the potential • pH: measured according to the ADAC official method to prevent and possibly treat certain diseases. Accordingly, 981.12 (Association of Dfficial Analytical Chemists, 2000) the extracts from tropical almond (Terminallia C. Linn) have using a potentiometer (QUIMIS) previously calibrated been described as hypoglycemic agents capable of regenerating with buffer solutions of pH 4 and 7; pancreatic β-cells due to the presence of methanol and aqueous extracts. • Soluble solids: determined by refractometry according to the IAL method (Instituto Adolfo Lutz, 1985) using an Therefore, this study aims to evaluate the nutritional and AR200 manual digital refractometer (Tecnal). colorimetric composition, morphology and thermogravimetric of tropical almond in order to obtain practical knowledge to • Total Acidity: determined according to the ADAC official method 22.058 (Association of Dfficial Analytical Chemists, add value to this fruit. 2000) that measures the acidity of substances. 2 Materials and methods • Humidity: determined according to the ADAC official method 920 151 (Association of Dfficial Analytical 2.1 Fruit harvest Chemists, 2000) by drying in a forced-air oven at 105 °C The tropical almond (Terminalia catappa Linn) fruits used in until constant weight; this study (2014 fruit season), about 5.0 kg, were collected from • Crude protein: determined according to the micro-Kjeldahl as adult trees in the city of Belém - PA. This fruit was registered in described by the ADAC official method 950.48 (Association the João Pires Murça (MG) Herbarium, also known as “herbárium of Dfficial Analytical Chemists, 2000), which is based on Amazanicum Musei paraenses” under the code # MG70506. determining the total amount of nitrogen existing in the The fruits were selected according to the maturity stage in which sample; crude protein content is calculated by multiplying they are ready for consumption (dark purplish-red). The fruits the total nitrogen by 6.25 (% N × 6.25); were picked directly from the trees according to their external • Total lipids: determined by solvent extraction on a Soxhlet appearance. apparatus according to the ADAC official method 948.22 (Association of Dfficial Analytical Chemists, 2000) using 2.2 Sample preparation petroleum ether as solvent; The fruit samples were transported in low density polyethylene • Fixed mineral residue: ash content was determined by (LDPE) bags to the Laboratory Food Analysis, Federal University incinerating the sample in a muffle furnace at 550 °C, of Pará, where they were rinsed with tap water, submerged in a according to the ADAC official method 930.05 (Association sanitizing solution of 150 ppm available chlorine for 5 minutes, of Dfficial Analytical Chemists, 2000); drained, manually pulped separating the pulp from the kernels, • Crude fiber: determined using the acid detergent (ADF), and stored at 7 °C. according to the method developed by Van Soest
Recommended publications
  • Australian Tropical Rainforest Plants - Online Edition
    Australian Tropical Rainforest Plants - Online edition Family Profile Combretaceae Family Description A family of about 20 genera and nearly 500 species, pantropic, well developed in Africa; five genera occur naturally in Australia. Genera Combretum - A genus of about 250 species, pantropic; one species occurs naturally in Australia. Exell (1954); Pedley (1990). Dansiea - A genus of two species endemic to Australia. Byrnes (1981); Pedley (1990). Macropteranthes - A genus of five species endemic to Australia. Cooper & Cooper (2004); Forster (1994); Harden et al. (2014); Pedley (1990); Stace (2007). Quisqualis - A genus of about 17 species in Africa, Asia and Malesia. Exell (1954). One species may have become naturalised in Australia. Terminalia - A genus of about 200 species, pantropic; 24 species occur naturally in Australia. Byrnes (1977); Coode (1973, 1978); Pedley (1990), Stace (2007). References Byrnes, N.B. (1977). A revision of Combretaceae in Australia. Contributions from the Queensland Herbarium No. 20:1-88. Byrnes, N.B. (1981). Addition to Combretaceae (Lagunclurieae) from Australia. Austrobaileya 1:385-387. Coode, M.J.E. (1973). Notes on Terminalia L. (Combretaceae) in Papuasia. Contributions from Herbarium Australiense 2:1-33. Coode, M.J.E. (1978). Combretaceae. In Womersley, J.S. (Ed.) 'Handbooks of the flora of Papua New Guinea.' Vol. 1, (Melbourne University Press: Melbourne.), pp. 43-110. Cooper, Wendy & Cooper, William T. (2004) Fruits of the Australian tropical rainforest, Nokomis Publications, Clifton Hill, Vic. Exell, A.W.C. (1954). Combretaceae. In 'Flora Malesiana.' Ser. 1, Vol. 4, (P. Noordhoff Ltd: Groningen.), pp. 533-589. Forster, P.I. (1994). Notes on Dansiea Byrnes and Macropteranthes F.
    [Show full text]
  • An Antifungal Property of Crude Plant Extracts from Anogeissus Leiocarpus and Terminalia Avicennioides
    34 Tanzania Journal of Health Research (2008), Vol. 10, No. 1 An antifungal property of crude plant extracts from Anogeissus leiocarpus and Terminalia avicennioides A. MANN*, A. BANSO and L.C. CLIFFORD Department of Science Laboratory Technology, The Federal Polytechnic, P.M.B. 55, Bida, Niger State, Nigeria Abstract: Chloroform, ethanolic, methanolic, ethyl acetate and aqueous root extracts of Anogeissus leiocarpus and Ter- minalia avicennioides were investigated in vitro for antifungal activities against Aspergillus niger, Aspergillus fumigatus, Penicillium species, Microsporum audouinii and Trichophyton rubrum using radial growth technique. The plant extracts inhibited the growth of all the test organisms. The minimum inhibitory concentration (MIC) of the extracts ranged between 0.03μg/ml and 0.07μg/ml while the minimum fungicidal concentration ranged between 0.04μg/ml and 0.08μg/ml. Ano- geissus leiocarpus appears to be more effective as an antifungal agent than Terminalia avicennioides. Ethanolic extracts of the two plant roots were more effective than the methanolic, chloroform, or aqueous extracts against all the test fungi. Key words: Anogeissus leiocarpus, Terminalia avicennioides, extracts, inhibitory, fungicidal, Nigeria Introduction sential oil of Aframomum melagulatus fruit inhibited the mycelia growth of Trichophyton mentagrophytes Many of the plant materials used in traditional medi- at a pronounced rate but the inhibitory concentration cine are readily available in rural areas and this has obtained against Aspergillus niger was lower. made traditional medicine relatively cheaper than Since medicinal plants play a paramount role in modern medicine (Apulu et al., 1994). Over Sixty the management of various ailments in rural commu- percent of Nigeria rural population depends on tra- nities, there is therefore, a need for scientific verifica- ditional medicine for their healthcare need (Apulu et tion of their activities against fungi.
    [Show full text]
  • Phytochemical Constituents of Combretum Loefl. (Combretaceae)
    Send Orders for Reprints to [email protected] 38 Pharmaceutical Crops, 2013, 4, 38-59 Open Access Phytochemical Constituents of Combretum Loefl. (Combretaceae) Amadou Dawe1,*, Saotoing Pierre2, David Emery Tsala2 and Solomon Habtemariam3 1Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Maroua, Cameroon, 2Department of Earth and Life Sciences, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Ma- roua, Cameroon, 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Cen- tral Avenue, Chatham-Maritime, Kent ME4 4TB, UK Abstract: Combretum is the largest and most widespread genus of Combretaceae. The genus comprises approximately 250 species distributed throughout the tropical regions mainly in Africa and Asia. With increasing chemical and pharma- cological investigations, Combretum has shown its potential as a source of various secondary metabolites. Combretum ex- tracts or isolates have shown in vitro bioactivitities such as antibacterial, antifungal, antihyperglycemic, cytotoxicity against various human tumor cell lines, anti-inflammatory, anti-snake, antimalarial and antioxidant effects. In vivo studies through various animal models have also shown promising results. However, chemical constituents and bioactivities of most species of this highly diversified genus have not been investigated. The molecular mechanism of bioactivities of Combretum isolates remains elusive. This review focuses on the chemistry of 261 compounds isolated and identified from 31 species of Combretum. The phytochemicals of interest are non-essential oil compounds belonging to the various struc- tural groups such as terpenoids, flavonoids, phenanthrenes and stilbenoids. Keywords: Combretum, phytochemistry, pharmacology, terpenoids, polyphenolic compounds, antibacterial activity, antifungal activity. INTRODUCTION is sometimes persistant, and especially in climbers it forms a hooked wooded spine when the leaf abscises.
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea
    EMU Vol. 96,89-101,1996 0 Royal Australasian Ornithologists Union 1996 0158-4197/96/0289 + 12 Received 10-4-1995, accepted 14-7-1995 Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea Andrew L. MacklJ and Debra D. Wright132 University of Miami, Department of Biology, Coral Gables, Florida 33124, USA Department of Ornithology, Academy of Natural Sciences, 19th and Parkway, Philadelphia, Pennsylvania 19103, USA Summary: During 1989-93, 170 species of birds were ob- net capture rates. Comparisons among four other sites in served and 1787 individuals captured in mist nets at the southern Papua New Guinea reveal striking similarities Crater Mountain Biological Research Station, Chimbu among sites in number of species and trophic organisation. Province, Papua New Guinea. Populations of many species Range extensions, weights and natural history observations fluctuated on annual or supra-annual schedules; 46 species are reported for many species. Feeding observations of nec- were considered transients. Areas of the forest where many tarivorous and frugivorous birds at over 50 species of plant understorey trees had been removed exhibited reduced mist are reported. In a review of the ecology of New Guinea's avifauna, Management Area, a conservation project based on Beehler (1982) reported that no long-term field studies land-use management by the traditional Pawaiian and had been carried out in diverse avian communities of Gimi landowners. The station is 10 km east of Haia in New Guinea. Since then there has been some progress, Chimbu Province, Papua New Guinea (6"43.4'S, mostly in lowland sites (Bell 1982a, 1982b, 1982c, 145'5.6'E) at c.
    [Show full text]
  • Pharmacoinformatics and UPLC-QTOF/ESI-MS-Based Phytochemical Screening of Combretum Indicum Against Oxidative Stress and Alloxan-Induced Diabetes in Long–Evans Rats
    molecules Article Pharmacoinformatics and UPLC-QTOF/ESI-MS-Based Phytochemical Screening of Combretum indicum against Oxidative Stress and Alloxan-Induced Diabetes in Long–Evans Rats Md. Shaekh Forid 1, Md. Atiar Rahman 2,* , Mohd Fadhlizil Fasihi Mohd Aluwi 3, Md. Nazim Uddin 4 , Tapashi Ghosh Roy 5 , Milon Chandra Mohanta 6 , AKM Moyeenul Huq 7,* and Zainul Amiruddin Zakaria 8,* 1 Department of Pharmacy, School of Science and Engineering, Southeast University, Dhaka 1213, Bangladesh; [email protected] 2 Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh 3 Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia; [email protected] 4 Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh; [email protected] 5 Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh; [email protected] 6 Department of Chemistry, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA; [email protected] 7 Citation: Forid, M.S.; Rahman, M.A.; Department of Pharmacy, School of Medicine, University of Asia Pacific, 74/A, Green Road, Dhaka 1205, Bangladesh Aluwi, M.F.F.M.; Uddin, M.N.; Roy, 8 Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, T.G.; Mohanta, M.C.; Huq, A.M.; UPM Serdang, Serdang 43400, Selangor, Malaysia Amiruddin Zakaria, Z. * Correspondence: [email protected] (M.A.R.); [email protected] (A.M.H.); [email protected] (Z.A.Z.); Pharmacoinformatics and UPLC- Tel.: +880-3126-060011-4 (M.A.R.); +880-1906-790224 (A.M.H.); +60-1-9211-7090 (Z.A.Z.) QTOF/ESI-MS-Based Phytochemical Screening of Combretum indicum Abstract: This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Com- against Oxidative Stress and bretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic Alloxan-Induced Diabetes in effects in a Long–Evans rat model.
    [Show full text]
  • Pacific Islands Area
    Habitat Planting for Pollinators Pacific Islands Area November 2014 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements This document is the result of collaboration with state and federal agencies and educational institutions. The authors would like to express their sincere gratitude for the technical assistance and time spent suggesting, advising, reviewing, and editing. In particular, we would like to thank the staff at the Hoolehua Plant Materials Center on the Hawaiian Island of Molokai, NRCS staff in Hawaii and American Samoa, and researchers and extension personnel at American Samoa Community College Land Grant (especially Mark Schmaedick). Authors Written by Jolie Goldenetz-Dollar (American Samoa Community College), Brianna Borders, Eric Lee- Mäder, and Mace Vaughan (The Xerces Society for Invertebrate Conservation), and Gregory Koob, Kawika Duvauchelle, and Glenn Sakamoto (USDA Natural Resources Conservation Service). Editing and layout Ashley Minnerath (The Xerces Society). Updated November 2014 by Sara Morris, Emily Krafft, and Anne Stine (The Xerces Society). Photographs We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Jolie Goldenetz-Dollar, American Samoa Community College. Cover bottom left: John Kaia, Lahaina Photography. Cover bottom right: Gregory Koob, Hawaii Natural Resources Conservation Service. Funding This technical note was funded by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and produced jointly by the NRCS and The Xerces Society for Invertebrate Conservation. Additional support was provided by the National Institute for Food and Agriculture (USDA). Please contact Tony Ingersoll ([email protected]) for more information about this publication.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • 117 La Familia Combretaceae En La Cuenca Del Río Balsas
    Núm.19, pp.117-153, ISSN 1405-2768; México, 2005 LA FAMILIA COMBRETACEAE EN LA CUENCA DEL RÍO BALSAS, MÉXICO Erika Margarita Pagaza Calderón Rafael Fernández Nava Laboratorio de Fanerógamas, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, IPN Apartado Postal 17-564, México, DF, CP 11410, MÉXICO RESUMEN Dentro del área de estudio se reconoce la existencia de cinco géneros con ocho En el presente trabajo se realizó una revisión especies de la familia Combretaceae: Bucida taxonómica de la familia Combretaceae para wiginsiana, Combretum argenteum, C. el área de la cuenca del río Balsas; se decandrum, C. fruticosum, C. laxum, incluyen descripciones y claves Conocarpus erecta, Laguncularia racemosa, dicotómicas para la identificación de los y Terminalia catappa. El género Bucida es géneros y las especies que se distribuyen reportado por primera vez para el área de dentro de la zona de estudio. estudio. El proyecto se desarrolló mediante la ABSTRACT revisión de más de 200 ejemplares de los herbarios de las siguientes instituciones: In this paper we present a taxonomic Escuela Nacional de Ciencias Biológicas revision of the family Combretaceae for the (ENCB), Instituto de Biología de la UNAM Balsas River basin, Mexico. The study area (MEXU), Facultad de Ciencias de la UNAM covers part of 8 states of our country (State (FCME), Universidad Autónoma de of Mexico, Guerrero, Jalisco, Michoacan, Chapingo, Sección de Posgrado (CHAP); Morelos, Oaxaca, Puebla and Tlaxcala). Instituto Nacional de Investigaciones Forestales (INIF), Universidad Autónoma The present work includes descriptions and del Estado de Morelos (HUMO) y la dichotomous keys for identifying genera Universidad Autónoma Metropolitana and species distribuited on this area.
    [Show full text]
  • Terminalia Catappa
    s Chemis ct try u d & o r R P e s Bryan, Nat Prod Chem Res 2016, 5:1 l e a r a r u t c h a N Natural Products Chemistry & Research DOI: 10.4172/2329-6836.1000249 ISSN: 2329-6836 Thesis Open Access Terminalia catappa (Talisay) Leaves for Preliminary Surface Water Treatment: An Eco-Friendly Approachs Bryan MN* Cagayan State University, Human Kinetics, Tuguegarao City, Cagayan 3500, Philippines Abstract At present, in order to decrease the hazards of using inorganic coagulants for preliminary water treatment, researchers have been studying the possibility of using new methods and materials to treat water. This study aimed to evaluate the performance of turbidity removal in water by using Terminalia catappa (Talisay) as natural coagulant. The coagulation active agent in the leaves of Terminalia catappa was extracted with 1.0 molar (M) Sodium Chloride (NaCl) solution. Water from Cagayan River, Tuguegarao City, with increased turbidity of 200 Nephelometric Turbidity Units (NTU) was used in this study. This study was done using Completely Randomized Design with loading doses of 2, 3, 4, and 5 mL/L of the stock solution with 5 g of Terminalia catappa leaf powder in 100 mL 1.0 M NaCl solution as coagulant. The turbidity, pH, and coliform count were determined for all the samples. The turbidity for the samples ranged from log101.81 to log101.33 NTU. The 5 ml/L treatment of Terminalia catappa showed the lowest residual turbidity where 88% turbidity was removed from the sample. The pH values ranged from 7.27 to 7.46.
    [Show full text]
  • Components from the Leaves and Twigs of Mangrove Lumnitzera Racemosa with Anti-Angiogenic and Anti-Inflammatory Effects
    marine drugs Article Components from the Leaves and Twigs of Mangrove Lumnitzera racemosa with Anti-Angiogenic and Anti-Inflammatory Effects Szu-Yin Yu 1,†, Shih-Wei Wang 1,2,† , Tsong-Long Hwang 3,4,5 , Bai-Luh Wei 6, Chien-Jung Su 1, Fang-Rong Chang 1,7,* and Yuan-Bin Cheng 1,8,* 1 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] (S.-Y.Y.); [email protected] (S.-W.W.); [email protected] (C.-J.S.) 2 Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan 3 Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 4 Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan 5 Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 6 Department of Life Science, National Taitung University, Taitung 950, Taiwan; [email protected] 7 National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan 8 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan * Correspondence: [email protected] (F.-R.C.); [email protected] (Y.-B.C.); Tel.: +886-7-312-1101 (ext. 2162) (F.-R.C.); +886-7-312-1101 (ext. 2197) (Y.-B.C.) † These authors contributed equally to this work. Received: 5 October 2018; Accepted: 23 October 2018; Published: 25 October 2018 Abstract: One new neolignan, racelactone A (1), together with seven known compounds (2−8) were isolated from the methanolic extract of the leaves and twigs of Lumnitzera racemosa.
    [Show full text]
  • Evaluation of the Chemical Composition, Nutritive Value and Antinutrients of Terminalia Catappa L
    International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-3, Issue-9, September 2015 Evaluation of the Chemical Composition, Nutritive Value and Antinutrients of Terminalia catappa L. Fruit (Tropical Almond) Justina I. R. Udotong, Michael I. Bassey Terminalia catappa L. is a large, deciduous tree (Plate Abstract— Terminalia catappa L. fruits were analyzed to 1.0) with smooth grey bark and whorled branches that form a establish their chemical composition and nutritive properties in canopy and is found in tropical and subtropical regions. The order to investigate the possibility of promoting their usage as fruit is large (1.2-2.3”), edible, fleshy, green (unripe) and human food or animal feed. The seeds (enclosed in the hard yellow or red (when ripe) containing a single seed. The fruit stone-like core) and the pulp (succulent exocarp and fleshy has a husk (34.08%), a porous and fibrous pericarp (8.97%), fibrous mesocarp) were analyzed. Proximate analyses showed that the seeds and pulp contained 47.34±0.03% and an exocarp which is relatively thin and smooth while the hard 80.93±0.05% moisture, 28.70±0.59% and 8.75±0.01% crude endocarp (46.63%) encloses an edible kernel (10.32%) [5]. protein, 5.19±0.08% and 4.79±0.17% ash, 3.76±0.34% and 3.10±0.03% crude fibre, 44.64±0.11% and 0.51±0.02% fat, 17.71±1.12% and 82.85±0.23% carbohydrate and 587.40±7.28kcal and 370.99±1.14kcal of energy, respectively.
    [Show full text]