001 Creative Use of Bokeh in Photography

Total Page:16

File Type:pdf, Size:1020Kb

001 Creative Use of Bokeh in Photography Creative Use of Bokeh in Photography 6 Helpful Techniques from Ian Plant 2 What does “bokeh” mean? ✤ Technically the word “bokeh” refers to the quality of the blur of out-of-focus parts of a photograph produced by a lens. But most photographers these days seem to use the term to refer to the blur itself. ✤ In this photograph of a chestnut-breasted coronet, the bokeh is the out-of-focus blurred orbs in the background. The orbs are actually sunlit tree leaves, but because I used a telephoto lens with a wide-open aperture, the leaves are rendered as abstract blurs instead. 3 1-Use points of light for your out- of-focus subjects ✤ The bokeh effect is most pronounced when you have points of light in the background. These bright highlights can be city lights at night, specular highlights on sunlit waves, or even sunlit leaves in a forest. This photo uses specular highlights on waves, backlit by the Chesapeake Bay, USA. Canon EOS 20D, Canon EF 500mm f/4L IS USM lens, ISO 200, f/6.3, 1/2500 rising sun. second. 4 2-The more out of focus, the better ✤ To produce a strong bokeh effect, you need areas of your photograph that are very out of focus. For this image of the entrance to a theater, I used the closest focusing distance of my lens in order to render the entire image out of focus, producing a bokeh effect across the entire image frame. ✤ The lens’ widest aperture was used, f/2.8, to ensure minimal depth of field and prevent any part of the image from being rendered in focus. The intentional defocusing creates an abstract rendering of all visual elements. Minneapolis, USA. Canon EOS 5D Mark III, Tamron SP 15-30mm f/2.8 Di VC USD lens, ISO 400, f/2.8, 1/25 second. 5 3-Shoot wide open for an optimum blurred bokeh effect ✤ By shooting wide-open (such as f/2.8 or f/4), you’ll create big, blurry bokeh blobs. A pleasing bokeh blur is easier to achieve with longer focal lengths (because they have shallower depth of field), but you can also achieve pleasing blurs with wide-angle lenses. ✤ No matter what lens you use, getting close to your subject is often a good strategy for optimizing the bokeh effect, which is what was done for this photo. In fact, this is so close that the bokeh orbs disappear, rendering as a blur of color instead. Grand Teton National Park, USA. Canon EOS 5D Mark III, Canon EF 24-70mm ‘ f/2.8L USM lens, ISO 200, f/2.8, 1/640 second. 6 4-Shoot stopped down for a more defined bokeh effect ✤ This selection allowed me to include specular highlights of sunlight reflected in the background water. ✤ A small aperture renders the bokeh orbs as smaller and more defined than if a wide-open aperture was Canon EOS 5D Mark III, Canon EF 200-400mm f/4L IS USM Lens used. with Internal 1.4x Extender, 560mm, ISO 100, f/32, 1/200 second 7 5-Experiment with your position relative to your subject and background ✤ If you get really close to your subject, and the background is far away, then the bokeh effect will be more pleasing than if the background is relatively close. ✤ You should be able to easily see this effect through your camera viewfinder or Live View. This image of a ringed kingfisher was shot only ten feet away throwing the background pleasingly out of focus. Canon EOS 5D Mark III, Canon EF 200-400mm f/4L IS USM lens with Internal 1.4x Extender, ISO 1000, f/5.6, 1/1000 second 8 6-Include bokeh orbs to enhance the overall design of your photo ✤ Don’t just add bokeh into your photos and expect good results. You have to think critically about where you put the bokeh orbs, and how they effect your overall composition. ✤ This image was shot close and through some backlit pine needles in order to render them as colorful bokeh blurs and it allowed for a creative frame around the bison with the resulting orbs. Canon EOS 5D Mark II, Canon EF 500mm f/4L IS USM lens, ISO 100, f/4, 1/400 second 9 So… ✤ “Bokeh can add color and a dash of impressionism to your photos. The creative use of out-of-focus highlights can considerably enhance your compositions. ” Thanks to Ian Plant… Tamron Image Master & Outdoor Photography Guide 10 .
Recommended publications
  • Optics – Panoramic Lens Applications Revisited
    Panoramic Lens Applications Revisited Simon Thibault* M.Sc., Ph.D., Eng Director, Optics Division/Principal Optical Designer ImmerVision 2020 University, Montreal, Quebec, H3A 2A5 Canada ABSTRACT During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope…), remote sensing (pipe inspection, crime scene investigation, archeology…), multimedia (hemispheric projector, panoramic image…). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360o hemispheric area. Keywords: medical imaging, image analysis, immersion, omnidirectional, panoramic, panomorph, multimedia, total situation awareness, remote sensing, wide-angle 1. INTRODUCTION Photography was invented by Daguerre in 1837, and at that time the main photographic objective was that the lens should cover a wide-angle field of view with a relatively high aperture1.
    [Show full text]
  • Depth-Aware Blending of Smoothed Images for Bokeh Effect Generation
    1 Depth-aware Blending of Smoothed Images for Bokeh Effect Generation Saikat Duttaa,∗∗ aIndian Institute of Technology Madras, Chennai, PIN-600036, India ABSTRACT Bokeh effect is used in photography to capture images where the closer objects look sharp and every- thing else stays out-of-focus. Bokeh photos are generally captured using Single Lens Reflex cameras using shallow depth-of-field. Most of the modern smartphones can take bokeh images by leveraging dual rear cameras or a good auto-focus hardware. However, for smartphones with single-rear camera without a good auto-focus hardware, we have to rely on software to generate bokeh images. This kind of system is also useful to generate bokeh effect in already captured images. In this paper, an end-to-end deep learning framework is proposed to generate high-quality bokeh effect from images. The original image and different versions of smoothed images are blended to generate Bokeh effect with the help of a monocular depth estimation network. The proposed approach is compared against a saliency detection based baseline and a number of approaches proposed in AIM 2019 Challenge on Bokeh Effect Synthesis. Extensive experiments are shown in order to understand different parts of the proposed algorithm. The network is lightweight and can process an HD image in 0.03 seconds. This approach ranked second in AIM 2019 Bokeh effect challenge-Perceptual Track. 1. Introduction tant problem in Computer Vision and has gained attention re- cently. Most of the existing approaches(Shen et al., 2016; Wad- Depth-of-field effect or Bokeh effect is often used in photog- hwa et al., 2018; Xu et al., 2018) work on human portraits by raphy to generate aesthetic pictures.
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • Portraiture, Surveillance, and the Continuity Aesthetic of Blur
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 6-22-2021 Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Michigan Technological University, [email protected] Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Recommended Citation Hristova, S. (2021). Portraiture, Surveillance, and the Continuity Aesthetic of Blur. Frames Cinema Journal, 18, 59-98. http://doi.org/10.15664/fcj.v18i1.2249 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/15062 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova DOI:10.15664/fcj.v18i1.2249 Frames Cinema Journal ISSN 2053–8812 Issue 18 (Jun 2021) http://www.framescinemajournal.com Frames Cinema Journal, Issue 18 (June 2021) Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Introduction With the increasing transformation of photography away from a camera-based analogue image-making process into a computerised set of procedures, the ontology of the photographic image has been challenged. Portraits in particular have become reconfigured into what Mark B. Hansen has called “digital facial images” and Mitra Azar has subsequently reworked into “algorithmic facial images.” 1 This transition has amplified the role of portraiture as a representational device, as a node in a network
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Step up to the Latest in Ultra-Telephoto Zoom Lenses
    Lightest in its class* Shoot precisely in the moment Extremely portable, with a highly responsive AF. Now you can seize the moment with lasting effect. Step up to the latest in ultra-telephoto zoom lenses 100-400mm F/4.5-6.3 Di VC USD (Model A035) For Canon and Nikon mounts Di: For full-frame and APS-C format DSLR cameras * Among 100-400mm interchangeable lenses for DSLR cameras (as of Oct, 2017; Tamron) Tripod mount is an option. Heavyweight Performance in a Lightweight Lens Excellent AF performance meets Mobility meets precision enhanced VC (Vibration Compensation) with the A035 ultra-telephoto lens eBAND Coating delivers sharp, clear photos Focal Length: 300mm Exposure: F/8 1/500sec ISO: 200 Precise AF tracking and VC (Vibration Compensation) are essential to ultra-telephoto lens performance. Tamron’s Dual MPU high-speed control system** helps make this possible. In addition to an MPU (micro-processing unit) with a built-in DSP for superior signal processing, the A035 features a separate MPU dedicated exclusively to vibration compensation. With AF tracking and enhanced VC, you can enjoy shooting fast-moving subjects with stability and ease— even in low-light. Focal Length: 140mm Exposure: F/14 1/200sec ISO: 200 The Tamron 100-400mm F/4.5-6.3 Di VC USD (Model A035) is a highly portable, Expand your possibilities ultra-telephoto zoom lens with AF precision for shooting instantaneous movement with an optional tripod mount with the utmost clarity. With this effectively positioned, extraordinary glass LD (Low Dispersion) lens, aberrations typical with many telephoto lenses are a thing of the Using a tripod is as easy as shooting handheld with the past.
    [Show full text]
  • Using Depth Mapping to Realize Bokeh Effect with a Single Camera Android Device EE368 Project Report Authors (SCPD Students): Jie Gong, Ran Liu, Pradeep Vukkadala
    Using Depth Mapping to realize Bokeh effect with a single camera Android device EE368 Project Report Authors (SCPD students): Jie Gong, Ran Liu, Pradeep Vukkadala Abstract- In this paper we seek to produce a bokeh Bokeh effect is usually achieved in high end SLR effect with a single image taken from an Android device cameras using portrait lenses that are relatively large in size by post processing. Depth mapping is the core of Bokeh and have a shallow depth of field. It is extremely difficult effect production. A depth map is an estimate of depth to achieve the same effect (physically) in smart phones at each pixel in the photo which can be used to identify which have miniaturized camera lenses and sensors. portions of the image that are far away and belong to However, the latest iPhone 7 has a portrait mode which can the background and therefore apply a digital blur to the produce Bokeh effect thanks to the dual cameras background. We present algorithms to determine the configuration. To compete with iPhone 7, Google recently defocus map from a single input image. We obtain a also announced that the latest Google Pixel Phone can take sparse defocus map by calculating the ratio of gradients photos with Bokeh effect, which would be achieved by from original image and reblured image. Then, full taking 2 photos at different depths to camera and defocus map is obtained by propagating values from combining then via software. There is a gap that neither of edges to entire image by using nearest neighbor method two biggest players can achieve Bokeh effect only using a and matting Laplacian.
    [Show full text]
  • 6 Tips for Near-Macro Photography with a Telephoto Lens a Post By: Elliot Hook
    6 Tips for Near-Macro Photography with a Telephoto Lens A Post By: Elliot Hook Macro photography is the art of capturing the fine detail of very small subjects that may not be able to be seen by the naked eye. Technically, to fall under the term ‘macro’, the subject should be captured with a reproduction ratio of 1:1, i.e. the subject will be captured on the sensor at 100 % life size. Macro lenses are specially designed to minimise the focussing distance, allowing the photographer to get closer to the subject and so increase the reproduction ratio. There are a number of other techniques that can be used to help achieve the desired magnification without a dedicated lens (extension tubes, close-up filters, reversing rings), however, one of less often considered techniques is to use something that you probably already have in your kit bag: a telephoto lens. Milking Bonnet Fungi (Mycena galopus) Telephoto lenses offer extreme magnification but generally have much larger minimum focussing distances pushing the photographer further from the subject and so reducing the reproduction ratio. Some telephoto lenses, when combined with camera systems utilising smaller sensors, are able to offer 1:1 magnification (‘true macro’) however, typically, telephoto lenses are limited to close-up photography, at near-macro reproduction ratios. Using a telephoto lens for this kind of work offers a couple of advantages over a dedicated macro lens that are a direct result of the large minimum focus distance. Because the working distance to the subject is in the region of 1 metre (compared to 15 – 30 cm of standard macro lenses) the risk of disturbing your subject as you compose your shot is much reduced.
    [Show full text]
  • AG-AF100 28Mm Wide Lens
    Contents 1. What change when you use the different imager size camera? 1. What happens? 2. Focal Length 2. Iris (F Stop) 3. Flange Back Adjustment 2. Why Bokeh occurs? 1. F Stop 2. Circle of confusion diameter limit 3. Airy Disc 4. Bokeh by Diffraction 5. 1/3” lens Response (Example) 6. What does In/Out of Focus mean? 7. Depth of Field 8. How to use Bokeh to shoot impressive pictures. 9. Note for AF100 shooting 3. Crop Factor 1. How to use Crop Factor 2. Foal Length and Depth of Field by Imager Size 3. What is the benefit of large sensor? 4. Appendix 1. Size of Imagers 2. Color Separation Filter 3. Sensitivity Comparison 4. ASA Sensitivity 5. Depth of Field Comparison by Imager Size 6. F Stop to get the same Depth of Field 7. Back Focus and Flange Back (Flange Focal Distance) 8. Distance Error by Flange Back Error 9. View Angle Formula 10. Conceptual Schema – Relationship between Iris and Resolution 11. What’s the difference between Video Camera Lens and Still Camera Lens 12. Depth of Field Formula 1.What changes when you use the different imager size camera? 1. Focal Length changes 58mm + + It becomes 35mm Full Frame Standard Lens (CANON, NIKON, LEICA etc.) AG-AF100 28mm Wide Lens 2. Iris (F Stop) changes *distance to object:2m Depth of Field changes *Iris:F4 2m 0m F4 F2 X X <35mm Still Camera> 0.26m 0.2m 0.4m 0.26m 0.2m F4 <4/3 inch> X 0.9m X F2 0.6m 0.4m 0.26m 0.2m Depth of Field 3.
    [Show full text]
  • Adaptive Optics in Laser Processing Patrick S
    Salter and Booth Light: Science & Applications (2019) 8:110 Official journal of the CIOMP 2047-7538 https://doi.org/10.1038/s41377-019-0215-1 www.nature.com/lsa REVIEW ARTICLE Open Access Adaptive optics in laser processing Patrick S. Salter 1 and Martin J. Booth1 Abstract Adaptive optics are becoming a valuable tool for laser processing, providing enhanced functionality and flexibility for a range of systems. Using a single adaptive element, it is possible to correct for aberrations introduced when focusing inside the workpiece, tailor the focal intensity distribution for the particular fabrication task and/or provide parallelisation to reduce processing times. This is particularly promising for applications using ultrafast lasers for three- dimensional fabrication. We review recent developments in adaptive laser processing, including methods and applications, before discussing prospects for the future. Introduction enhance ultrafast DLW. An adaptive optical element Over the past two decades, direct laser writing (DLW) enables control over the fabrication laser beam and allows with ultrafast lasers has developed into a mature, diverse it to be dynamically updated during processing. Adaptive – and industrially relevant field1 5. The ultrashort nature of elements can modulate the phase, amplitude and/or the laser pulses means that energy can be delivered to the polarisation of the fabrication beam, providing many focus in a period shorter than the characteristic timescale possibilities for advanced control of the laser fabrication for thermal diffusion, leading to highly accurate material process. In this review, we briefly outline the application modification1. Thus, by focusing ultrashort pulses onto areas of AO for laser processing before considering the 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; the surface of the workpiece, precise cuts and holes can be methods of AO, including the range of adaptive elements manufactured with a minimal heat-affected zone.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent
    June 2012 4H/Photography/2012-04pr Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent the picture, such as wide angle, normal angle and Lenses may be the most critical component of the telescopic view. camera. The lens on a camera is a series of precision-shaped pieces of glass that, when placed together, can manipulate light and change the appearance of an image. Some cameras have removable lenses (interchangeable lenses) while other cameras have permanent lenses (fixed lenses). Fixed-lens cameras are limited in their versatility, but are generally much less expensive than a camera body with several potentially expensive lenses. (The cost for interchangeable lenses can range from $1-200 for standard lenses to $10,000 or more for high quality, professional lenses.) In addition, fixed-lens cameras are typically smaller and easier to pack around on sightseeing or recreational trips. Those who wish to become involved in fine art, fashion, portrait, landscape, or wildlife photography, would be wise to become familiar with the various types of lenses serious photographers use. The following discussion is mostly about interchangeable-lens cameras. However, understanding the concepts will help in understanding fixed-lens cameras as well. Figures 1 & 2. Figure 1 shows this camera at its minimum Lens Terms focal length of 4.7mm, while Figure 2 shows the110mm maximum focal length. While the discussion on lenses can become quite technical there are some terms that need to be Focal length refers to the distance from the optical understood to grasp basic optical concepts—focal center of the lens to the image sensor.
    [Show full text]