On Complex Fermi Curves of Two-Dimensional Periodic Schrodinger¨ Operators

Total Page:16

File Type:pdf, Size:1020Kb

On Complex Fermi Curves of Two-Dimensional Periodic Schrodinger¨ Operators ON COMPLEX FERMI CURVES OF TWO-DIMENSIONAL PERIODIC SCHRODINGER¨ OPERATORS Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Universit¨at Mannheim vorgelegt von Dipl.-Phys. Alexander Klauer aus Heidelberg Mannheim, 2011 Dekan: Professor Dr. Wolfgang Effelsberg, Universit¨at Mannheim Referent: Professor Dr. Martin Schmidt, Universit¨at Mannheim Korreferent: Professor Dr. Andreas Knauf, Universit¨at Erlangen-Nurnberg¨ Tag der mundlichen¨ Prufung:¨ 3. Juni 2011 Abstract In dimensions d ≥ 2, the complex Bloch varieties and the associated Fermi curves of periodic Schr¨odinger operators with quasi-periodic boundary conditions are defined as complex analytic varieties. The Schr¨odinger potentials are taken from the Lebesgue space Ld=2 in the case d > 2, and from the Lorentz{Fourier space F`1;1 in the case d = 2. Then, an asymptotic analysis of the Fermi curves in the case d = 2 is performed. The decomposition of a Fermi curve into a compact part, an asymptotically free part, and thin handles, is recovered as expected. Furthermore, it is shown that the set of potentials whose associated Fermi curve has finite geometric genus is a dense subset of F`1;1. Moreover, the Fourier transforms of the potentials are locally isomorphic to perturbed Fourier transforms induced by the handles. Finally, an asymptotic family of parameters describing the sizes of the handles is introduced. These parameters are good candidates for describing the space of all Fermi curves. Zusammenfassung In d ≥ 2 Dimensionen werden die komplexen Blochvariet¨aten und die zuge- h¨origen Fermikurven periodischer Schr¨odingeroperatoren mit quasiperiodischen Randbedingungen als komplex analytische Variet¨aten definiert. Die Schr¨odinger- potentiale entstammen im Fall d > 2 dem Lebesgueraum Ld=2 und im Fall d = 2 dem Lorentz-Fourier-Raum F`1;1. Danach wird im Fall d = 2 eine asymptoti- sche Analyse der Fermikurven durchgefuhrt.¨ Erwartungsgem¨aß erh¨alt man die Aufteilung einer Fermikurve in einen kompakten Teil, einen asymptotisch freien Teil und dunne¨ Henkel. Weiterhin wird gezeigt, dass die Menge der Potentia- le, deren zugeh¨orige Fermikurve endliches geometrisches Geschlecht hat, eine dichte Teilmenge von F`1;1 ist. Uberdies¨ sind die Fouriertransformierten der Potentiale lokal isomorph zu von den Henkeln induzierten, gest¨orten Fourier- transformierten. Schließlich wird eine asymptotische Familie von Parametern, die die Gr¨oße der Henkel beschreiben, eingefuhrt.¨ Diese Parameter sind gute Kandidaten, den Raum aller Fermikurven zu beschreiben. Contents 1 Introduction 1 1.1 The inverse problem . 1 1.2 What is done in this work . 3 1.3 The inverse problem in physics . 4 1.4 Acknowledgements . 5 2 Function spaces 7 2.1 Measurable functions and Lebesgue spaces . 9 2.2 Sobolev spaces and potential spaces . 17 2.3 Rearrangement-invariant function spaces . 22 2.4 Lorentz{Zygmund spaces . 29 2.5 Fourier spaces . 36 2.6 Bochner spaces and tensor products . 38 2.7 Other spaces . 44 2.7.1 Hardy spaces . 44 2.7.2 Banach manifolds . 47 2.8 Localisation of function space norms . 47 2.8.1 Localisation on the torus . 47 2.8.2 Localisation on discrete lattices . 52 2.8.3 Translation and levelling operators . 54 3 Schr¨odinger operators 57 3.1 Schr¨odinger operators on the torus . 57 3.2 The resolvent of the free Schr¨odinger operator . 59 3.3 Resolvents of general Schr¨odinger operators . 65 4 Fermi curves 75 4.1 Bloch varieties and Fermi curves . 75 4.2 The free Fermi curve at d =2.................... 78 4.3 Asymptotic freeness . 83 4.4 The constant potential Fermi curve at d = 2 . 88 4.5 Asymptotic moduli parameterisation . 91 4.5.1 A nonlinear perturbation of the Fourier transform . 91 4.5.2 Approximation with potentials of finite type . 104 4.5.3 Per-double-point approximation of the Fermi curve . 115 v vi CONTENTS 5 Summary and outlook 125 5.1 Works with different focus . 125 5.2 Compact resolvent . 126 5.3 Fermi curve asymptotics . 129 5.4 Where to go from here . 129 A Additional function space theory 133 A.1 Lorentz{Karamata spaces . 133 B Failed extension to Dirac operators 137 B.1 Dirac operators . 138 B.1.1 Dirac operators on the torus . 138 B.1.2 Resolvents of free Dirac operators . 139 B.1.3 Resolvents of general Dirac operators . 142 B.2 Fermi curves of Dirac operators . 145 B.2.1 Bloch varieties and Fermi curves . 145 B.2.2 Free and asymptotically free Dirac Fermi curves . 148 B.3 Asymptotic analysis of Dirac Fermi curves . 150 B.3.1 A nonlinear perturbation of the Fourier transform . 151 B.3.2 Approximation with finite-type Dirac Fermi curves . 157 B.3.3 Failure to estimate the perturbed Fourier transforms . 159 Bibliography 163 List of Figures 4.1 Cross section of R .......................... 81 4.2 Cross section of F (0) . 82 4.3 Two examples of handles . 85 vii viii LIST OF FIGURES Chapter 1 Introduction 1.1 The inverse problem The Schr¨odinger equation in d dimensions, d 2 Z>0, is given by (−∆ + u) = λψ: Here, u and are functions from Rd to C, and λ is a complex scalar. The function u acts on by left multiplication. The Laplace operator ∆, on the other hand, acts as the differential operator d X @2 ∆ = ; @x2 i=1 i d where x1; : : : ; xd are coordinates for R with respect to the canonical ordered ba- sis. Hence, for d ≥ 2, the Schr¨odinger equation is a partial differential equation. We call the operator −∆ + u the Schr¨odinger operator with potential u. In par- ticular, the Schr¨odinger equation is an eigenvalue equation for the Schr¨odinger operator in which a non-trivial solution is an eigenfunction belonging to the eigenvalue λ. The set of possible eigenvalues is the spectrum of the Schr¨odinger operator. We are interested in periodic Schr¨odinger operators. By this, we mean two things. Firstly, the potential u must be a periodic function. For d = 1, this condition has a very simple formalisation. Just pick some b 2 R, b 6= 0, and let u fulfil the condition u(x + b) = u(x) for all x 2 R: Of course, this condition does not in general remain the same if we pick a different b. In this sense, b becomes a parameter for our locus of discourse. For general d, periodicity means not just one period, but d independent periods. It is helpful to put slightly more sophistication into this concept than in the case d = 1 and express periodicity through a geometric lattice Γ ⊆ Rd of rank d: d u(x + γ) = u(x) for all x 2 R and all γ 2 Γ: 1 2 CHAPTER 1. INTRODUCTION Secondly, a solution of the Schr¨odinger equation must be a quasi-periodic function, that is, there is some boundary condition k 2 Cd such that 2πi(kjγ) d (x + γ) = e (x) for all x 2 R , γ 2 Γ; (1.1.1) where (·|·) is the complex extension of the canonical Euclidean bilinear form on Rd. This second condition is not entirely independent of the first. The periodicity of u and the chain rule imply d (−∆ + u(x)) (x + γ) = ((−∆ + u) )(x + γ) for all x 2 R , γ 2 Γ: In other words, the periodic Schr¨odinger operator commutes with all translation operators Tγ , γ 2 Γ, which are defined by (Tγ )(x) := (x + γ): Hence, assuming the Schr¨odinger operator and the translation operators are di- agonalisable in some suitable sense (take, for example, the Schr¨odinger operator as a closed operator on L2(Rd) with real-valued potential), they are simultane- ously so. Therefore, given some fixed solution , there is a function χ:Γ ! C such that the translation operators act on as Tγ = χ(γ) for all γ 2 Γ in this case. The Z-module structure of Γ then yields χ(γ1 + γ2) = χ(γ1)χ(γ2) for all γ1; γ2 2 Γ: Since the translation operators do not have zero eigenvalues, we arrive at (1.1.1), except that we posed this condition independently of the aforementioned pre- requisites. Although we introduced k as a boundary condition, we shall consider it part of an extended spectrum of the Schr¨odinger operator. That is, for each Schr¨odinger operator (identified by its potential u) we define the Bloch variety d B(u) := f(k; λ) 2 C × C : There is a non-trivial solution of the Schr¨odinger equation (−∆ + u) = λψ d such that (x + γ) = exp(2πi(kjγ)) (x) for all x 2 R , γ 2 Γg: We can now pose the inverse problem of periodic Schr¨odinger operators. It consists of two subproblems. • The moduli problem. Describe/parameterise the set of all Bloch vari- eties. • The isospectral problem. Given a fixed potential u0, describe/para- meterise the set of all potentials u such that B(u) = B(u0). As it stands, the inverse problem is somewhat ill-posed. For example, what kind of \varieties" should the Bloch varieties be, and what space should we choose u from such that B(u) actually is such a variety? However, for the purposes of this introduction, we shall use this approximate problem specification, and provide the necessary additional details later in the work. 1.2. WHAT IS DONE IN THIS WORK 3 1.2 What is done in this work It turns out that a complete solution of the inverse problem is a very extensive programme. In this work, we shall solve only a small part of it. For d = 1, the inverse problem has been solved thoroughly [MO75, MM75, MT76, Kri77, MO80, Kor08].
Recommended publications
  • Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces
    Axioms 2013, 2, 224-270; doi:10.3390/axioms2020224 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces Sergey Ajiev School of Mathematical Sciences, Faculty of Science, University of Technology-Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; E-Mail: [email protected] Received: 4 March 2013; in revised form: 12 May 2013 / Accepted: 14 May 2013 / Published: 23 May 2013 Abstract: We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schaffer¨ constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of Holder-Lipschitz¨ mappings. Abstract results are further applied to the spaces and pairs from the wide classes IG and IG+ and non-commutative Lp-spaces. The intimate relation between the subspaces and quotients of the IG-spaces on one side and various types of anisotropic Besov, Lizorkin-Triebel and Sobolev spaces of functions on open subsets of an Euclidean space defined in terms of differences, local polynomial approximations, wavelet decompositions and other means (as well as the duals and the lp-sums of all these spaces) on the other side, allows us to present the algorithm of extending the main results of the article to the latter spaces and pairs. Special attention is paid to the matter of sharpness. Our approach is quasi-Euclidean in its nature because it relies on the extrapolation of properties of Hilbert spaces and the study of 1-complemented subspaces of the spaces under consideration.
    [Show full text]
  • Linear Operators
    C H A P T E R 10 Linear Operators Recall that a linear transformation T ∞ L(V) of a vector space into itself is called a (linear) operator. In this chapter we shall elaborate somewhat on the theory of operators. In so doing, we will define several important types of operators, and we will also prove some important diagonalization theorems. Much of this material is directly useful in physics and engineering as well as in mathematics. While some of this chapter overlaps with Chapter 8, we assume that the reader has studied at least Section 8.1. 10.1 LINEAR FUNCTIONALS AND ADJOINTS Recall that in Theorem 9.3 we showed that for a finite-dimensional real inner product space V, the mapping u ’ Lu = Óu, Ô was an isomorphism of V onto V*. This mapping had the property that Lauv = Óau, vÔ = aÓu, vÔ = aLuv, and hence Lau = aLu for all u ∞ V and a ∞ ®. However, if V is a complex space with a Hermitian inner product, then Lauv = Óau, vÔ = a*Óu, vÔ = a*Luv, and hence Lau = a*Lu which is not even linear (this was the definition of an anti- linear (or conjugate linear) transformation given in Section 9.2). Fortunately, there is a closely related result that holds even for complex vector spaces. Let V be finite-dimensional over ç, and assume that V has an inner prod- uct Ó , Ô defined on it (this is just a positive definite Hermitian form on V). Thus for any X, Y ∞ V we have ÓX, YÔ ∞ ç.
    [Show full text]
  • On Some Extensions of Bernstein's Inequality for Self-Adjoint Operators
    On Some Extensions of Bernstein's Inequality for Self-Adjoint Operators Stanislav Minsker∗ e-mail: [email protected] Abstract: We present some extensions of Bernstein's concentration inequality for random matrices. This inequality has become a useful and powerful tool for many problems in statis- tics, signal processing and theoretical computer science. The main feature of our bounds is that, unlike the majority of previous related results, they do not depend on the dimension d of the ambient space. Instead, the dimension factor is replaced by the “effective rank" associated with the underlying distribution that is bounded from above by d. In particular, this makes an extension to the infinite-dimensional setting possible. Our inequalities refine earlier results in this direction obtained by D. Hsu, S. M. Kakade and T. Zhang. Keywords and phrases: Bernstein's inequality, Random Matrix, Effective rank, Concen- tration inequality, Large deviations. 1. Introduction Theoretical analysis of many problems in applied mathematics can often be reduced to problems about random matrices. Examples include numerical linear algebra (randomized matrix decom- positions, approximate matrix multiplication), statistics and machine learning (low-rank matrix recovery, covariance estimation), mathematical signal processing, among others. n P Often, resulting questions can be reduced to estimates for the expectation E Xi − EXi or i=1 n P n probability P Xi − EXi > t , where fXigi=1 is a finite sequence of random matrices and i=1 k · k is the operator norm. Some of the early work on the subject includes the papers on noncom- mutative Khintchine inequalities [LPP91, LP86]; these tools were used by M.
    [Show full text]
  • HEAT FLOW and QUANTITATIVE DIFFERENTIATION Contents 1
    HEAT FLOW AND QUANTITATIVE DIFFERENTIATION TUOMAS HYTONEN¨ AND ASSAF NAOR Abstract. For every Banach space (Y; k · kY ) that admits an equivalent uniformly convex norm we prove that there exists c = c(Y ) 2 (0; 1) with the following property. Suppose that n 2 N and that X is an n-dimensional normed space with unit ball BX . Then for every 1-Lipschitz function cn f : BX ! Y and for every " 2 (0; 1=2] there exists a radius r > exp(−1=" ), a point x 2 BX with x + rBX ⊆ BX , and an affine mapping Λ : X ! Y such that kf(y) − Λ(y)kY 6 "r for every y 2 x+rBX . This is an improved bound for a fundamental quantitative differentiation problem that was formulated by Bates, Johnson, Lindenstrauss, Preiss and Schechtman (1999), and consequently it yields a new proof of Bourgain's discretization theorem (1987) for uniformly convex targets. The strategy of our proof is inspired by Bourgain's original approach to the discretization problem, which takes the affine mapping Λ to be the first order Taylor polynomial of a time-t Poisson evolute of an extension of f to all of X and argues that, under appropriate assumptions on f, there must exist a time t 2 (0; 1) at which Λ is (quantitatively) invertible. However, in the present context we desire a more stringent conclusion, namely that Λ well-approximates f on a macroscopically large ball, in which case we show that for our argument to work one cannot use the Poisson semigroup. Nevertheless, our strategy does succeed with the Poisson semigroup replaced by the heat semigroup.
    [Show full text]
  • Regularization and Simulation of Constrained Partial Differential
    Regularization and Simulation of Constrained Partial Differential Equations vorgelegt von Diplom-Mathematiker Robert Altmann aus Berlin Von der Fakult¨atII - Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Noemi Kurt Berichter: Prof. Dr. Volker Mehrmann Berichterin: Prof. Dr. Caren Tischendorf Berichter: Prof. Dr. Alexander Ostermann Tag der wissenschaftlichen Aussprache: 29. 05. 2015 Berlin 2015 Contents Zusammenfassung . v Abstract . vii Published Papers. ix 1. Introduction . 1 Part A Preliminaries 5 2. Differential-algebraic Equations (DAEs) . 6 2.1. Index Concepts . 6 2.1.1. Differentiation Index. 7 2.1.2. Further Index Concepts. 8 2.2. High-index DAEs . 8 2.3. Index Reduction Techniques. 9 2.3.1. Index Reduction by Differentiation . 9 2.3.2. Minimal Extension . 9 3. Functional Analytic Tools . 11 3.1. Fundamentals . 11 3.1.1. Dual Operators and Riesz Representation Theorem . 11 3.1.2. Test Functions and Distributions . 12 3.1.3. Sobolev Spaces . 13 3.1.4. Traces . 14 3.1.5. Poincar´eInequality and Negative Norms . 15 3.1.6. Weak Convergence and Compactness . 17 3.2. Bochner Spaces . 17 3.3. Sobolev-Bochner Spaces . 20 3.3.1. Gelfand Triples . 20 3.3.2. Definition and Embeddings . 21 4. Abstract Differential Equations . 23 4.1. Nemytskii Mapping . 23 4.2. Operator ODEs . 24 4.2.1. First-order Equations . 25 4.2.2. Second-order Equations. 26 4.3. Operator DAEs . 27 i 5. Discretization Schemes . 29 5.1. Spatial Discretization . 29 5.1.1.
    [Show full text]
  • MATRICES WHOSE HERMITIAN PART IS POSITIVE DEFINITE Thesis by Charles Royal Johnson in Partial Fulfillment of the Requirements Fo
    MATRICES WHOSE HERMITIAN PART IS POSITIVE DEFINITE Thesis by Charles Royal Johnson In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1972 (Submitted March 31, 1972) ii ACKNOWLEDGMENTS I am most thankful to my adviser Professor Olga Taus sky Todd for the inspiration she gave me during my graduate career as well as the painstaking time and effort she lent to this thesis. I am also particularly grateful to Professor Charles De Prima and Professor Ky Fan for the helpful discussions of my work which I had with them at various times. For their financial support of my graduate tenure I wish to thank the National Science Foundation and Ford Foundation as well as the California Institute of Technology. It has been important to me that Caltech has been a most pleasant place to work. I have enjoyed living with the men of Fleming House for two years, and in the Department of Mathematics the faculty members have always been generous with their time and the secretaries pleasant to work around. iii ABSTRACT We are concerned with the class Iln of n><n complex matrices A for which the Hermitian part H(A) = A2A * is positive definite. Various connections are established with other classes such as the stable, D-stable and dominant diagonal matrices. For instance it is proved that if there exist positive diagonal matrices D, E such that DAE is either row dominant or column dominant and has positive diag­ onal entries, then there is a positive diagonal F such that FA E Iln.
    [Show full text]
  • ECE 487 Lecture 3 : Foundations of Quantum Mechanics II
    ECE 487 Lecture 12 : Tools to Understand Nanotechnology III Class Outline: •Inverse Operator •Unitary Operators •Hermitian Operators Things you should know when you leave… Key Questions • What is an inverse operator? • What is the definition of a unitary operator? • What is a Hermetian operator and what do we use them for? M. J. Gilbert ECE 487 – Lecture 1 2 02/24/1 1 Tools to Understand Nanotechnology- III Let’s begin with a problem… Prove that the sum of the modulus squared of the matrix elements of a linear operator  is independent of the complete orthonormal basis used to represent the operator. M. J. Gilbert ECE 487 – Lecture 1 2 02/24/1 1 Tools to Understand Nanotechnology- III Last time we considered operators and how to represent them… •Most of the time we spent trying to understand the most simple of the operator classes we consider…the identity operator. •But he was only one of four operator classes to consider. 1. The identity operator…important for operator algebra. 2. Inverse operators…finding these often solves a physical problem mathematically and the are also important in operator algebra. 3. Unitary operators…these are very useful for changing the basis for representing the vectors and describing the evolution of quantum mechanical systems. 4. Hermitian operators…these are used to represent measurable quantities in quantum mechanics and they have some very powerful mathematical properties. M. J. Gilbert ECE 487 – Lecture 1 2 02/24/1 1 Tools to Understand Nanotechnology- III So, let’s move on to start discussing the inverse operator… Consider an operator  operating on some arbitrary function |f>.
    [Show full text]
  • An Introduction to Functional Analysis for Science and Engineering David A
    An introduction to functional analysis for science and engineering David A. B. Miller Stanford University This article is a tutorial introduction to the functional analysis mathematics needed in many physical problems, such as in waves in continuous media. This mathematics takes us beyond that of finite matrices, allowing us to work meaningfully with infinite sets of continuous functions. It resolves important issues, such as whether, why and how we can practically reduce such problems to finite matrix approximations. This branch of mathematics is well developed and its results are widely used in many areas of science and engineering. It is, however, difficult to find a readable introduction that both is deep enough to give a solid and reliable grounding but yet is efficient and comprehensible. To keep this introduction accessible and compact, I have selected only the topics necessary for the most important results, but the argument is mathematically complete and self-contained. Specifically, the article starts from elementary ideas of sets and sequences of real numbers. It then develops spaces of vectors or functions, introducing the concepts of norms and metrics that allow us to consider the idea of convergence of vectors and of functions. Adding the inner product, it introduces Hilbert spaces, and proceeds to the key forms of operators that map vectors or functions to other vectors or functions in the same or a different Hilbert space. This leads to the central concept of compact operators, which allows us to resolve many difficulties of working with infinite sets of vectors or functions. We then introduce Hilbert-Schmidt operators, which are compact operators encountered extensively in physical problems, such as those involving waves.
    [Show full text]
  • Bulk-Boundary Correspondence for Disordered Free-Fermion Topological
    Bulk-boundary correspondence for disordered free-fermion topological phases Alexander Alldridge1, Christopher Max1,2, Martin R. Zirnbauer2 1 Mathematisches Institut, E-mail: [email protected] 2 Institut für theoretische Physik, E-mail: [email protected], [email protected] Received: 2019-07-12 Abstract: Guided by the many-particle quantum theory of interacting systems, we de- velop a uniform classification scheme for topological phases of disordered gapped free fermions, encompassing all symmetry classes of the Tenfold Way. We apply this scheme to give a mathematically rigorous proof of bulk-boundary correspondence. To that end, we construct real C∗-algebras harbouring the bulk and boundary data of disordered free-fermion ground states. These we connect by a natural bulk-to-boundary short ex- act sequence, realising the bulk system as a quotient of the half-space theory modulo boundary contributions. To every ground state, we attach two classes in different pic- tures of real operator K-theory (or KR-theory): a bulk class, using Van Daele’s picture, along with a boundary class, using Kasparov’s Fredholm picture. We then show that the connecting map for the bulk-to-boundary sequence maps these KR-theory classes to each other. This implies bulk-boundary correspondence, in the presence of disorder, for both the “strong” and the “weak” invariants. 1. Introduction The research field of topological quantum matter stands out by its considerable scope, pairing strong impact on experimental physics with mathematical structure and depth. On the experimental side, physicists are searching for novel materials with technolog- ical potential, e.g., for future quantum computers; on the theoretical side, mathemati- cians have been inspired to revisit and advance areas such as topological field theory and various types of generalised cohomology and homotopy theory.
    [Show full text]
  • Nearly Tight Trotterization of Interacting Electrons
    Nearly tight Trotterization of interacting electrons Yuan Su1,2, Hsin-Yuan Huang1,3, and Earl T. Campbell4 1Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA 2Google Research, Venice, CA 90291, USA 3Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA 4AWS Center for Quantum Computing, Pasadena, CA 91125, USA We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledge of the initial state. We achieve this us- ing Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the tran- sition amplitude of nested commutators of the Hamiltonian terms within the η-electron manifold. We develop multiple techniques for bounding the transi- tion amplitude and expectation of general fermionic operators, which may be 5/3 of independent interest. We show that it suffices to use n n4/3η2/3 no(1) η2/3 + gates to simulate electronic structure in the plane-wave basis with n spin or- bitals and η electrons, improving the best previous result in second quantiza- tion up to a negligible factor while outperforming the first-quantized simulation when n = η2−o(1). We also obtain an improvement for simulating the Fermi- Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons. arXiv:2012.09194v2 [quant-ph] 30 Jun 2021 Accepted in Quantum 2021-06-03, click title to verify.
    [Show full text]
  • On Sums of Range Symmetric Matrices in Minkowski Space
    BULLETIN of the Bull. Malaysian Math. Sc. Soc. (Second Series) 25 (2002) 137-148 MALAYSIAN MATHEMATICAL SCIENCES SOCIETY On Sums of Range Symmetric Matrices in Minkowski Space AR. MEENAKSHI AND D. KRISHNASWAMY Department of Mathematics, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, South India Abstract. We give necessary and sufficient condition for the sums of range symmetric matrices to be range symmetric in Minkowski space m. As an application it is shown that the sum and parallel sum of parallel summable range symmetric matrices are range symmetric. 1. Introduction . Throughout we shall deal with C n×n , the space of n× n complex matrices. Let C n be the space of complex n-tuples. We shall index the components of a complex vector in n C from 0 to n − 1. That is u = (u0 , u1, u2 , L, un−1 ). Let G be the Minkowski metric tensor defined by Gu = (u0 , − u1 , − u2 , L, − un−1 ). Clearly the Minkowski ⎡ 1 0 ⎤ 2 n metric matrix G = ⎢ ⎥ and G = I n . Minkowski inner product on C is ⎣ 0 − I n−1 ⎦ defined by (u, v) = < u, Gv > , where < ⋅ , ⋅ > denotes the conventional Hilbert space inner product. A space with Minkowski inner product is called a Minkowski space denoted as m. With respect to the Minkowski inner product the adjoint of a matrix A ∈ C n×n is given by A~ = GA∗ G , where A∗ is the usual Hermitian adjoint. Naturally we call a matrix A ∈ C n×n m-symmetric in Minkowski space if A~ = A, and m-orthogonal if A~ A = I .
    [Show full text]
  • Random and Optimal Configurations in Complex Function Theory
    Random and optimal configurations in complex function theory ARON WENNMAN Doctoral Thesis Stockholm, Sweden 2018 KTH Institutionen för Matematik TRITA-SCI-FOU 2018:20 100 44 Stockholm ISBN 978-91-7729-783-3 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i matematik Fredag den 8 juni 2018 kl 13.00 i sal E2, Kungl Tekniska högskolan, Lindstedtsvägen 3, Stockholm. c Aron Wennman, 2018 • Tryck: Universitetsservice US AB iii Abstract This thesis consists of six articles spanning over several areas of math- ematical analysis. The dominant theme is the study of random point pro- cesses and optimal point configurations, which may be though of as systems of charged particles with mutual repulsion. We are predominantly occupied with questions of universality, a phenomenon that appears in the study of random complex systems where seemingly unrelated microscopic laws pro- duce systems with striking similarities in various scaling limits. In particular, we obtain a complete asymptotic expansion of planar orthogonal polynomi- als with respect to exponentially varying weights, which yields universality for the microscopic boundary behavior in the random normal matrix (RNM) model (Paper A) as well as in the case of more general interfaces for Bergman kernels (Paper B). Still in the setting of RNM ensembles, we investigate prop- erties of scaling limits near singular points of the boundary of the spectrum, including cusps points (Paper C). We also obtain a central limit theorem for fluctuations of linear statistics in the polyanalytic Ginibre ensemble, using a new representation of the polyanalytic correlation kernel in terms of algebraic differential operators acting on the classical Ginibre kernel (Paper D).
    [Show full text]