Algebraic Geometry Techniques in Incidence Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Algebraic Geometry Michael Stoll
Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results. -
Study Guide for the Midterm. Topics: • Euclid • Incidence Geometry • Perspective Geometry • Neutral Geometry – Through Oct.18Th
Study guide for the midterm. Topics: • Euclid • Incidence geometry • Perspective geometry • Neutral geometry { through Oct.18th. You need to { Know definitions and examples. { Know theorems by names. { Be able to give a simple proof and justify every step. { Be able to explain those of Euclid's statements and proofs that appeared in the book, the problem set, the lecture, or the tutorial. Sources: • Class Notes • Problem Sets • Assigned reading • Notes on course website. The test. • Excerpts from Euclid will be provided if needed. • The incidence axioms will be provided if needed. • Postulates of neutral geometry will be provided if needed. • There will be at least one question that is similar or identical to a homework question. Tentative large list of terms. For each of the following terms, you should be able to write two sentences, in which you define it, state it, explain it, or discuss it. Euclid's geometry: - Euclid's definition of \right angle". - Euclid's definition of \parallel lines". - Euclid's \postulates" versus \common notions". - Euclid's working with geometric magnitudes rather than real numbers. - Congruence of segments and angles. - \All right angles are equal". - Euclid's fifth postulate. - \The whole is bigger than the part". - \Collapsing compass". - Euclid's reliance on diagrams. - SAS; SSS; ASA; AAS. - Base angles of an isosceles triangle. - Angles below the base of an isosceles triangle. - Exterior angle inequality. - Alternate interior angle theorem and its converse (we use the textbook's convention). - Vertical angle theorem. - The triangle inequality. - Pythagorean theorem. Incidence geometry: - collinear points. - concurrent lines. - Simple theorems of incidence geometry. - Interpretation/model for a theory. -
Arxiv:1609.06355V1 [Cs.CC] 20 Sep 2016 Outlaw Distributions And
Outlaw distributions and locally decodable codes Jop Bri¨et∗ Zeev Dvir† Sivakanth Gopi‡ September 22, 2016 Abstract Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. De- spite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in L∞ norm) with a small number of samples. We coin the term ‘outlaw distribu- tions’ for such distributions since they ‘defy’ the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently ‘smooth’ functions implies the existence of constant query LDCs and vice versa. We also give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry and from hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters. 1 Introduction Error correcting codes (ECCs) solve the basic problem of communication over noisy channels. They encode a message into a codeword from which, even if the channel partially corrupts it, arXiv:1609.06355v1 [cs.CC] 20 Sep 2016 the message can later be retrieved. With one of the earliest applications of the probabilistic method, formally introduced by Erd˝os in 1947, pioneering work of Shannon [Sha48] showed the existence of optimal (capacity-achieving) ECCs. -
Connections Between Graph Theory, Additive Combinatorics, and Finite
UNIVERSITY OF CALIFORNIA, SAN DIEGO Connections between graph theory, additive combinatorics, and finite incidence geometry A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Michael Tait Committee in charge: Professor Jacques Verstra¨ete,Chair Professor Fan Chung Graham Professor Ronald Graham Professor Shachar Lovett Professor Brendon Rhoades 2016 Copyright Michael Tait, 2016 All rights reserved. The dissertation of Michael Tait is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION To Lexi. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . .v List of Figures . vii Acknowledgements . viii Vita........................................x Abstract of the Dissertation . xi 1 Introduction . .1 1.1 Polarity graphs and the Tur´annumber for C4 ......2 1.2 Sidon sets and sum-product estimates . .3 1.3 Subplanes of projective planes . .4 1.4 Frequently used notation . .5 2 Quadrilateral-free graphs . .7 2.1 Introduction . .7 2.2 Preliminaries . .9 2.3 Proof of Theorem 2.1.1 and Corollary 2.1.2 . 11 2.4 Concluding remarks . 14 3 Coloring ERq ........................... 16 3.1 Introduction . 16 3.2 Proof of Theorem 3.1.7 . 21 3.3 Proof of Theorems 3.1.2 and 3.1.3 . 23 3.3.1 q a square . 24 3.3.2 q not a square . 26 3.4 Proof of Theorem 3.1.8 . 34 3.5 Concluding remarks on coloring ERq ........... 36 4 Chromatic and Independence Numbers of General Polarity Graphs . -
Arxiv:1910.11630V1 [Math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the Notion of Stability
Geometric Invariant Theory, holomorphic vector bundles and the Harder–Narasimhan filtration Alfonso Zamora Departamento de Matem´aticaAplicada y Estad´ıstica Universidad CEU San Pablo Juli´anRomea 23, 28003 Madrid, Spain e-mail: [email protected] Ronald A. Z´u˜niga-Rojas Centro de Investigaciones Matem´aticasy Metamatem´aticas CIMM Escuela de Matem´atica,Universidad de Costa Rica UCR San Jos´e11501, Costa Rica e-mail: [email protected] Abstract. This survey intends to present the basic notions of Geometric Invariant Theory (GIT) through its paradigmatic application in the construction of the moduli space of holomorphic vector bundles. Special attention is paid to the notion of stability from different points of view and to the concept of maximal unstability, represented by the Harder-Narasimhan filtration and, from which, correspondences with the GIT picture and results derived from stratifications on the moduli space are discussed. Keywords: Geometric Invariant Theory, Harder-Narasimhan filtration, moduli spaces, vector bundles, Higgs bundles, GIT stability, symplectic stability, stratifications. MSC class: 14D07, 14D20, 14H10, 14H60, 53D30 Contents 1 Introduction 2 2 Preliminaries 4 2.1 Lie groups . .4 2.2 Lie algebras . .6 2.3 Algebraic varieties . .7 2.4 Vector bundles . .8 arXiv:1910.11630v1 [math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the notion of stability . 10 3.2 Hilbert-Mumford criterion . 14 3.3 Symplectic stability . 18 3.4 Examples . 21 3.5 Maximal unstability . 24 2 git, hvb & hnf 4 Moduli Space of vector bundles 28 4.1 GIT construction of the moduli space . 28 4.2 Harder-Narasimhan filtration . -
Keith E. Mellinger
Keith E. Mellinger Department of Mathematics home University of Mary Washington 1412 Kenmore Avenue 1301 College Avenue, Trinkle Hall Fredericksburg, VA 22401 Fredericksburg, VA 22401-5300 (540) 368-3128 ph: (540) 654-1333, fax: (540) 654-2445 [email protected] http://www.keithmellinger.com/ Professional Experience • Director of the Quality Enhancement Plan, 2013 { present. UMW. • Professor of Mathematics, 2014 { present. Department of Mathematics, UMW. • Interim Director, Office of Academic and Career Services, Fall 2013 { Spring 2014. UMW. • Associate Professor, 2008 { 2014. Department of Mathematics, UMW. • Department Chair, 2008 { 2013. Department of Mathematics, UMW. • Assistant Professor, 2003 { 2008. Department of Mathematics, UMW. • Research Assistant Professor (Vigre post-doc), 2001 - 2003. Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045. Position partially funded by a VIGRE grant from the National Science Foundation. Education • Ph.D. in Mathematics: August 2001, University of Delaware, Newark, DE. { Thesis: Mixed Partitions and Spreads of Projective Spaces • M.S. in Mathematics: May 1997, University of Delaware. • B.S. in Mathematics: May 1995, Millersville University, Millersville, PA. { minor in computer science, option in statistics Grants and Awards • Millersville University Outstanding Young Alumni Achievement Award, presented by the alumni association at MU, May 2013. • Mathematical Association of America's Carl B. Allendoerfer Award for the article, -
1 Definition and Models of Incidence Geometry
1 Definition and Models of Incidence Geometry (1.1) Definition (geometry) A geometry is a set S of points and a set L of lines together with relationships between the points and lines. p 2 1. Find four points which belong to set M = f(x;y) 2 R jx = 5g: 2. Let M = f(x;y)jx;y 2 R;x < 0g: p (i) Find three points which belong to set N = f(x;y) 2 Mjx = 2g. − 4 L f 2 Mj 1 g (ii) Are points P (3;3), Q(6;4) and R( 2; 3 ) belong to set = (x;y) y = 3 x + 2 ? (1.2) Definition (Cartesian Plane) L Let E be the set of all vertical and non-vertical lines, La and Lk;n where vertical lines: f 2 2 j g La = (x;y) R x = a; a is fixed real number ; non-vertical lines: f 2 2 j g Lk;n = (x;y) R y = kx + n; k and n are fixed real numbers : C f 2 L g The model = R ; E is called the Cartesian Plane. C f 2 L g 3. Let = R ; E denote Cartesian Plane. (i) Find three different points which belong to Cartesian vertical line L7. (ii) Find three different points which belong to Cartesian non-vertical line L15;p2. C f 2 L g 4. Let P be some point in Cartesian Plane = R ; E . Show that point P cannot lie simultaneously on both L and L (where a a ). a a0 , 0 (1.3) Definition (Poincar´ePlane) L Let H be the set of all type I and type II lines, aL and pLr where type I lines: f 2 j g aL = (x;y) H x = a; a is a fixed real number ; type II lines: f 2 j − 2 2 2 2 g pLr = (x;y) H (x p) + y = r ; p and r are fixed R, r > 0 ; 2 H = f(x;y) 2 R jy > 0g: H f L g The model = H; H will be called the Poincar´ePlane. -
Vector Bundles and Projective Modules
VECTOR BUNDLES AND PROJECTIVE MODULES BY RICHARD G. SWAN(i) Serre [9, §50] has shown that there is a one-to-one correspondence between algebraic vector bundles over an affine variety and finitely generated projective mo- dules over its coordinate ring. For some time, it has been assumed that a similar correspondence exists between topological vector bundles over a compact Haus- dorff space X and finitely generated projective modules over the ring of con- tinuous real-valued functions on X. A number of examples of projective modules have been given using this correspondence. However, no rigorous treatment of the correspondence seems to have been given. I will give such a treatment here and then give some of the examples which may be constructed in this way. 1. Preliminaries. Let K denote either the real numbers, complex numbers or quaternions. A X-vector bundle £ over a topological space X consists of a space F(£) (the total space), a continuous map p : E(Ç) -+ X (the projection) which is onto, and, on each fiber Fx(¡z)= p-1(x), the structure of a finite di- mensional vector space over K. These objects are required to satisfy the follow- ing condition: for each xeX, there is a neighborhood U of x, an integer n, and a homeomorphism <p:p-1(U)-> U x K" such that on each fiber <b is a X-homo- morphism. The fibers u x Kn of U x K" are X-vector spaces in the obvious way. Note that I do not require n to be a constant. -
Classical Algebraic Geometry
CLASSICAL ALGEBRAIC GEOMETRY Daniel Plaumann Universität Konstanz Summer A brief inaccurate history of algebraic geometry - Projective geometry. Emergence of ’analytic’geometry with cartesian coordinates, as opposed to ’synthetic’(axiomatic) geometry in the style of Euclid. (Celebrities: Plücker, Hesse, Cayley) - Complex analytic geometry. Powerful new tools for the study of geo- metric problems over C.(Celebrities: Abel, Jacobi, Riemann) - Classical school. Perfected the use of existing tools without any ’dog- matic’approach. (Celebrities: Castelnuovo, Segre, Severi, M. Noether) - Algebraization. Development of modern algebraic foundations (’com- mutative ring theory’) for algebraic geometry. (Celebrities: Hilbert, E. Noether, Zariski) from Modern algebraic geometry. All-encompassing abstract frameworks (schemes, stacks), greatly widening the scope of algebraic geometry. (Celebrities: Weil, Serre, Grothendieck, Deligne, Mumford) from Computational algebraic geometry Symbolic computation and dis- crete methods, many new applications. (Celebrities: Buchberger) Literature Primary source [Ha] J. Harris, Algebraic Geometry: A first course. Springer GTM () Classical algebraic geometry [BCGB] M. C. Beltrametti, E. Carletti, D. Gallarati, G. Monti Bragadin. Lectures on Curves, Sur- faces and Projective Varieties. A classical view of algebraic geometry. EMS Textbooks (translated from Italian) () [Do] I. Dolgachev. Classical Algebraic Geometry. A modern view. Cambridge UP () Algorithmic algebraic geometry [CLO] D. Cox, J. Little, D. -
ON the POLYHEDRAL GEOMETRY of T–DESIGNS
ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master of Arts In Mathematics by Steven Collazos San Francisco, California August 2013 Copyright by Steven Collazos 2013 CERTIFICATION OF APPROVAL I certify that I have read ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS by Steven Collazos and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Arts in Mathematics at San Francisco State University. Matthias Beck Associate Professor of Mathematics Felix Breuer Federico Ardila Associate Professor of Mathematics ON THE POLYHEDRAL GEOMETRY OF t{DESIGNS Steven Collazos San Francisco State University 2013 Lisonek (2007) proved that the number of isomorphism types of t−(v; k; λ) designs, for fixed t, v, and k, is quasi{polynomial in λ. We attempt to describe a region in connection with this result. Specifically, we attempt to find a region F of Rd with d the following property: For every x 2 R , we have that jF \ Gxj = 1, where Gx denotes the G{orbit of x under the action of G. As an application, we argue that our construction could help lead to a new combinatorial reciprocity theorem for the quasi{polynomial counting isomorphism types of t − (v; k; λ) designs. I certify that the Abstract is a correct representation of the content of this thesis. Chair, Thesis Committee Date ACKNOWLEDGMENTS I thank my advisors, Dr. Matthias Beck and Dr. -
Chapter 12 the Cross Ratio
Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have been led to these ideas by various problems at hand, but let us step back and take a look at one important point of view of the big picture. 12.1 Klein's Erlanger program In 1872, Felix Klein, one of the leading mathematicians and geometers of his day, in the city of Erlanger, took the following point of view as to what the role of geometry was in mathematics. This is from his \Recent trends in geometric research." Let there be given a manifold and in it a group of transforma- tions; it is our task to investigate those properties of a figure belonging to the manifold that are not changed by the transfor- mation of the group. So our purpose is clear. Choose the group of transformations that you are interested in, and then hunt for the \invariants" that are relevant. This search for invariants has proved very fruitful and useful since the time of Klein for many areas of mathematics, not just classical geometry. In some case the invariants have turned out to be simple polynomials or rational functions, such as the case with the cross ratio. In other cases the invariants were groups themselves, such as homology groups in the case of algebraic topology. 12.2 The projective line In Chapter 11 we saw that the collineations of a projective plane come in two \species," projectivities and field automorphisms.