From Scarcity to Abundance: Business Solutions for a Water Constrained

Total Page:16

File Type:pdf, Size:1020Kb

From Scarcity to Abundance: Business Solutions for a Water Constrained From Scarcity to Abundance: Business Solutions for a Water Constrained World SHAPE SUPPORTERS This project was made possible through the support of CCC’s Environment Program Network. INTRODUCTION 3: INFRASTRUCTURE AND INVESTMENT 3 U.S. Chamber of Commerce Foundation Corporate Citizenship Center 29 Forest Trends Ecosystem Marketplace Private Sector Solutions for Securing a Sustainable Water Future Water Stewardship Looks “Beyond the Fence” 31 Sealed Air 1: CONSERVATION AND EFFICIENCY Water Recycling: How Business and Community Leaders Work Together to Make Water Recycling a Reality 7 Dell 33 Freeport-McMoRan Inc. A Blueprint for Water Conservation in the Supply Chain Community Engagement Key to Developing New Sources of Water for Freeport-McMoRan’s Cerro Verde Mine in Peru 9 MGM Resorts International Water Conservation and Collaboration in the Desert City 35 Trucost Investing in Sustainable Water Use to Enable Business Growth 11 MillerCoors Better Barley, Better Beer 4: RECYCLING AND REUSE 13 Nestlé Waters North America Achieving Sustainable Results through Collective Action 39 ConocoPhillips Co. Freshwater Conservation through Produced Water Recycling 15 Walmart Promoting a Quality Water Supply through Efficiency and Conservation 41 RRS Disappearing Act: Are On-Site “Waste to Water” Digesters the Silver Bullet for Institutional Food Waste? 17 Hilton Water and Hospitality: How Hilton Is Working to Reduce its Water Footprint 43 USG Corporation Wallboard Systems Innovation: The Circular Economy in Action 19 GSK Reducing our Water Impact 45 Xylem Inc. Recent Survey Shows Solid Support for Potable Water Reuse in California 2: ENERGY-WATER NEXUS 5: TECHNOLOGY INNOVATION 23 The Dow Chemical Company TABLE OF CONTENTS TABLE The Water Imperative: Securing Sustainable Growth in a Water-Stressed World 49 CH2M Wet Weather Flow Management 25 Ecolab Nalco Water Leverages 3D TRASAR™ Technology for Cooling Water to Optimize Cooling 53 Intel Corporation Tower Water Use in Northwestern Mexico Power Plant Preparing for Water Scarcity: A Tech Company’s Approach 55 Pentair Water Management Solutions for the Global Food and Beverage Industry, from Farm to Table 57 Veolia North America Sustainable Management of Produced Water for Chevron’s San Ardo Oil Field FROM SCARCITY TO ABUNDANCE: INTRODUCTION Business Solutions for a Water Constrained World Private Sector Solutions for Securing a Sustainable Water Future By Jennifer Gerholdt, Senior Director, Environment, Corporate Citizenship Center, U.S. Chamber of Commerce Foundation Water is essential to support all life on Earth, live without sufficient access to freshwater for at whether for drinking, cleaning, irrigating crops, or least one month out of the year, according to Science manufacturing the goods and services we depend Advances. More than half of the world’s cities and on every day. Yet, businesses, communities, and three-fourths of irrigated farms experience water countries across the globe are running out of this shortages on a regular basis. precious, finite resource. A rapidly growing population; increasing demand from According to the United Nations, the world will face cities, agriculture, and industry; shifting diets; greater a 40% shortfall in freshwater in as soon as 15 years demand for energy; and intensification of extreme under the current scenario. Already, approximately weather events are fueling water shortages globally. 66% of the world’s population, or 4 billion people, The private sector increasingly recognizes water as • MGM Resorts International: Leverage a wide a critical resource for long-term business growth range of process and technology improvements, and profitability, and recognizes the need to develop including water-smart landscaping and drip irrigation comprehensive water management strategies and systems, to conserve and reclaim water. initiatives as water scarcity becomes the new normal • The Dow Chemical Company: Deploy for many parts of the world. membrane technology to reduce high energy and cost burden associated with water purification, and At the U.S. Chamber of Commerce Foundation advance innovative collaboration to get the most Corporate Citizenship Center, we showcase out of every drop. innovative approaches to help solve the global water challenge. Companies are implementing solutions Additionally, we are pleased to include perspectives within their fence lines and in communities to help from some of our other partners, such as Forest fight water scarcity. Examples in this report include Trends and Trucost, that are contributing thought the following: leadership, tools, and resources to help companies develop new approaches for managing water. • CH2M: Deploy smart technology and advanced data analytics so local water utilities can improve We hope you find this report valuable in providing their response and minimize wet weather fresh thinking and examples of innovative and overflows into the environment. scalable solutions for securing a sustainable water • Intel Corporation: Treat and return future for all. approximately 80% of the water it uses back to municipal water treatment operations for reuse by local communities. 3 • U.S. Chamber of Commerce Foundation Corporate Citizenship Center 2016 • 4 CHAPTER 1: CONSERVATION AND EFFICIENCY FROM SCARCITY TO ABUNDANCE: CHAPTER ONE: CONSERVATION AND EFFICIENCY Business Solutions for a Water Constrained World A Blueprint for Water Conservation in the Supply Chain By Jennifer Allison, Vice President, Global Supply Chain Sustainability, Dell According to the World Economic Forum, water We also work closely with our suppliers to reduce crisis is in the top five global risks of highest concern the overall environmental footprint of our operations, for the next 10 years. Growing demand, pollution, of which water use is an important element. We inefficient use of freshwater, and climate change have launched our water risk mitigation initiative in 2014 contributed to increased water shortages and risks. by conducting a “water hotspot survey” with over At Dell Technologies, we are committed to putting our 200 suppliers to gather data on their water usage, technology and expertise to work where they can do conservation strategies, costs, local laws, and other the most good for people and the planet—and we critical pieces of information. In support of our goal are constantly looking to innovate our products and to reduce the water use intensity of our products, operations to improve the world in which we all live. we require key production suppliers and select service suppliers to develop five-year water risk As part of our 2020 Legacy of Good plan, Dell is mitigation plans. We are rolling out this requirement working to reduce our water use in water-stressed to 50 suppliers each year, and by 2020 we will have regions by 20%. While Dell’s direct water use is collected detailed water plans from 250 supplier relatively limited—approximately 1.4 million cubic facilities; we’ll then commence a refresh cycle of 50 meters of water was used worldwide in Dell- facilities per year thereafter. operated facilities in 2015 (the same amount that flows over Niagara Falls in 11 minutes)—we are In 2015, we selected the first 50 suppliers with the introducing closed-loop and rainwater collection highest water consumption, and provided them with training series and plan development, we have also our end goal is to help develop a multi-partner systems to minimize drawing from local sources. sophisticated training on how to develop robust invited two standout suppliers from the first round to program and supply chain for the use of ocean-bound In Brazil, a rainwater collection system enabled and impactful water conservation strategies. We share their experiences and best practices with the plastics as a viable alternative to virgin plastic. our manufacturing facility to collect and reuse are leveraging expertise from organizations such second round of suppliers. approximately 320 cubic meters of water for irrigation as Business for Social Responsibility, Shanghai We are excited about the engagement model that in 2015. Academy of Environmental Sciences, Alliance for In order to keep moving toward the circular we have built around the critical sustainability issue Water Stewardships, and Veolia to provide input and economy model that must flourish in the 21st of water conservation and efficiency in our supply insight into the development of these plans. After century, we need to continue to develop innovative chain. By implementing a framework for action that those suppliers submitted the first round of plans, processes, materials, and products that use fewer incorporates capability building, supplier networking, our environmental experts provided feedback on virgin resources. Beyond our supply chain water and strategic planning, we have established a how consumption strategies could be improved. conservation strategies, we are also investigating how blueprint for continual improvement and innovation By closely reviewing the first round of water plans, Dell can play a role in cleaning up watershed basin in our products, operations, and throughout our we were able to identify 179 water efficiency areas in stressed regions. We are exploring options to value chain. We welcome a more active conversation opportunities, with potential to save 2,734,700 address the presence of plastic material in oceans and among businesses on product and process innovation cubic liters of water per year. These suppliers are freshwater sources through a pilot
Recommended publications
  • Summary of Produced Water Management Practices
    Potential for Beneficial Use of Oil and Gas Produced Water David B. Burnett1 Abstract Technology advancements and the increasing need for fresh water resources have created the potential for desalination of oil field brine to be a cost-effective fresh water resource for the citizens of Texas. In our state and in other mature oil and gas production areas, the majority of wells produce brine water along with gas and oil. Many of these wells produce less than 10 barrels of oil a day (bbl/day) along with substantial amounts of water. Transporting water from these stripper wells is expensive, so much so that in many cases the produced water can be treated on site, including desalination, for less cost than hauling it away. One key that makes desalination affordable is that the contaminants removed from the brine can be injected back into the oil and gas producing formation without having to have an EPA Class I hazardous injection permit. The salts removed from the brine originally came from the formation into which it is being re-injected and environmental regulations permit a Class II well to contain the salt “concentrate”. This chapter discusses key issues driving this new technology. Primary are the costs (economic and environmental) of current produced water management and the potential for desalination in Texas. In addition the cost effectiveness of new water treatment technology and the changes in environmental and institutional conditions are encouraging innovative new technology to address potential future water shortages in Texas. Introduction Who in their right mind would ever try to purify and re-use oil field brine? The very nature of the material produced along with oil and gas would seem to make such practices uneconomical.
    [Show full text]
  • I Subsurface Waste Disposal by Means of Wells a Selective Annotated Bibliography
    I Subsurface Waste Disposal By Means of Wells A Selective Annotated Bibliography By DONALD R. RIMA, EDITH B. CHASE, and BEVERLY M. MYERS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2020 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS G. B. MORTON, Secretary GEOLOGICAL SURVEY W. A. Radlinski, Acting Director Library of Congress catalog-card No. 77-179486 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.50 (paper cover) Stock Number 2401-1229 FOREWORD Subsurface waste disposal or injection is looked upon by many waste managers as an economically attractive alternative to providing the sometimes costly surface treatment that would otherwise be required by modern pollution-control law. The impetus for subsurface injection is the apparent success of the petroleum industry over the past several decades in the use of injection wells to dispose of large quantities of oil-field brines. This experience coupled with the oversimplification and glowing generalities with which the injection capabilities of the subsurface have been described in the technical and commercial literature have led to a growing acceptance of deep wells as a means of "getting rid of" the ever-increasing quantities of wastes. As the volume and diversity of wastes entering the subsurface continues to grow, the risk of serious damage to the environment is certain to increase. Admittedly, injecting liquid wastes deep beneath the land surface is a potential means for alleviating some forms of surface pollution. But in view of the wide range in the character and concentrations of wastes from our industrialized society and the equally diverse geologic and hydrologic con­ ditions to be found in the subsurface, injection cannot be accepted as a universal panacea to resolve all variants of the waste-disposal problem.
    [Show full text]
  • REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water
    REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water March 2014 U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation EPA 542-R-14-001 Contents Contents .......................................................................................................................................... 2 Acronyms and Abbreviations ......................................................................................................... 5 Notice and Disclaimer..................................................................................................................... 7 Introduction ..................................................................................................................................... 8 Methodology ................................................................................................................................... 9 Passive Technologies Technology: Anoxic Limestone Drains ........................................................................................ 11 Technology: Successive Alkalinity Producing Systems (SAPS).................................................. 16 Technology: Aluminator© ............................................................................................................ 19 Technology: Constructed Wetlands .............................................................................................. 23 Technology: Biochemical Reactors .............................................................................................
    [Show full text]
  • Water and Sewage Management Issues in Rural Poland
    water Article Water and Sewage Management Issues in Rural Poland Adam Piasecki Faculty of Earth Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland; [email protected] Received: 19 December 2018; Accepted: 22 March 2019; Published: 26 March 2019 Abstract: Water and sewage management in Poland has systematically been transformed in terms of quality and quantity since the 1990s. Currently, the most important problem in this matter is posed by areas where buildings are spread out across rural areas. The present work aims to analyse the process of changes and the current state of water and sewage management in rural areas of Poland. The author intended to present the issues in their broader context, paying attention to local specificity as well as natural and economic conditions. The analysis led to the conclusion that there have been significant positive changes in water and sewage infrastructure in rural Poland. A several-fold increase in the length of sewage and water supply networks and number of sewage treatment plants was identified. There has been an increase in the use of water and treated sewage, while raw sewage has been minimised. Tap-water quality and wastewater treatment standards have improved. At the same time, areas requiring further improvement—primarily wastewater management—were indicated. It was identified that having only 42% of the rural population connected to a collective sewerage system is unsatisfactory. All the more so, in light of the fact that more than twice as many consumers are connected to the water supply network (85%). The major ecological threat that closed-system septic sewage tanks pose is highlighted.
    [Show full text]
  • Assessment of Risks and Benefits for Pennsylvania Water Sources When Utilizing Acid Mine Drainage for Hydraulic Fracturing Frederick R
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-22-2015 Assessment of Risks and Benefits for Pennsylvania Water Sources When Utilizing Acid Mine Drainage for Hydraulic Fracturing frederick r. davis University of San Francisco, [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Water Resource Management Commons Recommended Citation davis, frederick r., "Assessment of Risks and Benefits for eP nnsylvania Water Sources When Utilizing Acid Mine Drainage for Hydraulic Fracturing" (2015). Master's Projects and Capstones. 135. https://repository.usfca.edu/capstone/135 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. Davis 0 This Master’s Project Assessment of Risks and Benefits for Pennsylvania Water Sources When Utilizing Acid Mine Drainage for Hydraulic Fracturing by Frederick R. Davis Is submitted in partial fulfillment of the requirements for the degree of: Master’s of Science in Environmental Management at the University of San Francisco Submitted by: Received By: Frederick R. Davis 5/21/2015 Kathleen Jennings 5/21/2015 Davis 1 Table of Contents Chapter 1: Introduction ...............................................................................................................
    [Show full text]
  • Wastewater an Arab Perspective E/ESCWA/SDPD/2017/BOOKLET.1
    Wastewater An Arab Perspective E/ESCWA/SDPD/2017/BOOKLET.1 Economic and Social Commission for Western Asia Wastewater An Arab Perspective @ 2017 United Nations All rights reserved worldwide Requests to reproduce excerpts or photocopy should be addressed to the United Nations Economic and Social Commission for Western Asia (ESCWA). All other queries on rights and licenses, including subsidiary rights, should be addressed to: ESCWA, United Nations House, Riad El Solh Square, P.O. Box: 11- 8575, Beirut, Lebanon. E-mail: [email protected]; website: www.unescwa.org United Nations publication issued by ESCWA. The designations employed and the presentation of the material in this booklet do not imply the expression of any opinion whatsoever on the part of the secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of commercial names and products does not imply the endorsement of the United Nations. The document is issued without formal editing. 17-00174 3 Preface This World Water Day booklet builds on the Arab Chapter included in the 2017 World Water Development Report, Wastewater: the untapped resource. The World Water Development Report is published annually by the World Water Assessment Programme of the United Nations Educational, Scientific and Cultural Organization (UNESCO/WWAP) with the substantive support of other United Nations organizations through UN-Water. The Arab Chapter (Chapter 10) of the 2017 World Water Development Report was contributed by the United Nations Economic and Social Commission for Western Asia (ESCWA).
    [Show full text]
  • A White Paper Describing Produced Water from Production of Crude Oil
    AAA WWWhhhiiittteee PPPaaapppeeerrr DDDeeessscccrrriiibbbiiinnnggg PPPrrroooddduuuccceeeddd WWWaaattteeerrr fffrrrooommm PPPrrroooddduuuccctttiiiooonnn ooofff CCCrrruuudddeee OOOiiilll,,, NNNaaatttuuurrraaalll GGGaaasss,,, aaannnddd CCCoooaaalll BBBeeeddd MMMeeettthhhaaannneee Prepared for: U.S. Department of Energy National Energy Technology Laboratory Under Contract W-31-109-Eng-38 Prepared by: Argonne National Laboratory John A. Veil Markus G. Puder Deborah Elcock Robert J. Redweik, Jr. January 2004 Produced Water White Paper i TABLE OF CONTENT Executive Summary............................................................................................................ v 1 Introduction............................................................................................................. 1 1.1 What Is Produced Water? ................................................................................... 1 1.2 Purpose................................................................................................................ 1 1.3 Layout of White Paper........................................................................................ 2 1.4 Acknowledgments .............................................................................................. 2 2 Produced Water Characteristics.............................................................................. 3 2.1 Major Components of Produced Water .............................................................. 3 2.1.1 Produced Water from Oil Production ............................................................
    [Show full text]
  • CBM, Oil, Or Gas Produced Water Permit Requirements
    GUIDELINES CHAPTER 3 PERMIT REQUIREMENTS FOR TREATMENT OF CBM, OIL OR GAS PRODUCED WATER Revised August 9, 2013 TABLE OF CONTENTS I. Authority...................................................................................................................... 1 a. Environmental Quality Act ................................................................................................................ 1 b. Chapter 3 ........................................................................................................................................... 1 c. Chapter 11 ......................................................................................................................................... 1 II. Who needs a permit? ................................................................................................... 1 a. Permit Required ................................................................................................................................ 1 III. Types of permits .......................................................................................................... 2 a. General Permits ........................................................................................................... 2 b. Individual Permits ........................................................................................................ 2 IV. Permit Application Requirements ................................................................................ 2 a. Chapter 3 Permit Application ...........................................................................................................
    [Show full text]
  • A White Paper Describing Produced Water from Production of Crude Oil
    AAA WWWhhhiiittteee PPPaaapppeeerrr DDDeeessscccrrriiibbbiiinnnggg PPPrrroooddduuuccceeeddd WWWaaattteeerrr fffrrrooommm PPPrrroooddduuuccctttiiiooonnn ooofff CCCrrruuudddeee OOOiiilll,,, NNNaaatttuuurrraaalll GGGaaasss,,, aaannnddd CCCoooaaalll BBBeeeddd MMMeeettthhhaaannneee Prepared for: U.S. Department of Energy National Energy Technology Laboratory Under Contract W-31-109-Eng-38 Prepared by: Argonne National Laboratory John A. Veil Markus G. Puder Deborah Elcock Robert J. Redweik, Jr. January 2004 Produce Water White Paper i TABLE OF CONTENT Executive Summary............................................................................................................ v 1 Introduction............................................................................................................. 1 1.1 What Is Produced Water? ................................................................................... 1 1.2 Purpose................................................................................................................ 1 1.3 Layout of White Paper........................................................................................ 2 1.4 Acknowledgments .............................................................................................. 2 2 Produced Water Characteristics.............................................................................. 3 2.1 Major Components of Produced Water .............................................................. 3 2.1.1 Produced Water from Oil Production ............................................................
    [Show full text]
  • Sources of Coal-Mine Drainage and Their Effects on Surface-Water Chemistry in the Claybank Creek Basin and Vicinity, North-Central Missouri, 1983-84
    Sources of Coal-Mine Drainage and Their Effects on Surface-Water Chemistry in The Claybank Creek Basin and Vicinity, North-Central Missouri, 1983-84 United States Geological Survey Water-Supply Paper 2305 Prepared in cooperation with Missouri Department of Natural Resources, Land Reclamation Commission and U.S. Department of the Interior Office of Surface Mining Reclamation and Enforcement Sources of Coal-Mine Drainage and Their Effects on Surface-Water Chemistry in The Claybank Creek Basin and Vicinity, North-Central Missouri, 1983-84 By DALE W. BLEVINS Prepared in cooperation with the Misssouri Department of Natural Resources, Land Reclamation Commission and U.S. Department of the Interior, Office of Surface Mining Reclamation and Enforcement U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2305 DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 For sale by the Branch of Distribution Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Blevins, Dale W. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, North-central Missouri, 1983-84 (U.S. Geological Survey water-supply ; 2305) Bibliography: p. Supt. of Docs, no.: I 19.13:2305 1. Acid mine drainage Missouri Congresses. 2. Coal mine waste Missouri- Congresses. 3. Water chemistry Congresses I. Missouri. Land Reclamation
    [Show full text]
  • Produced Water: Oil and Gas Terminology Glossary
    FACT SHEET Produced Water: Oil and Gas Terminology Glossary What Is Produced Water? Produced water is water that comes out of the well with the crude oil during crude oil production. Produced water contains soluble and non-soluble oil/organics, suspended solids, dissolved solids, and various chemicals used in the production process. The ratio of produced water to oil varies from well to well and over the life of the well. Generally, this ratio is more than 3 and can be more than 20 in some parts of the world. Not only does the flowrate of the produced water change over time, but so does the composition. The composition of produced water also varies widely from well to well. Although oil and water are generally thought to not mix well, multiple separation steps are typically required to separate the two. The degree of produced water treatment depends on the site’s treatment requirements-typically deep well injection, reinjection, evaporation ponds, or surface water discharge. As regulations have become more stringent, disposal method costs increase, and water becomes more scarce, beneficial reuse is becoming a more viable option. Depending on the degree of chemical and mechanical emulsification, removal of oil and suspended solids from the water can be a treatment challenge. The American Petroleum Institute (API) gravity, a measure of oil density, varies by region (see Table 6, page 4), which affects the effectiveness of gravity separation methods. Produced water treatment is typically considered an upstream oil and gas (O&G) process. The treatment steps and many terms are unique to this process but common in the industry.
    [Show full text]
  • Effects of Produced Water and Production Chemical Additives on Marine Environments: a Toxicological Review
    1 Effects of Produced Water and Production Chemical Additives on Marine Environments: A Toxicological Review By Jill Schmeichel Submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Environmental Assessment Raleigh, North Carolina 2017 Approved by advisory committee: Catherine LePrevost, PhD, Chair Waverly Kallestad, PhD, Co-Chair April 7, 2017 2 ABSTRACT Schmeichel, Jill, Masters of Environmental Assessment. Effects of Produced Water and Production Chemical Additives on Marine Environments: A Toxicological Review Review of current research suggests that produced water discharges are unlikely to induce widespread acute toxicological effects in marine environments due to the highly dilute concentrations of chemical constituents entering receiving waters, and their fate and transport behaviors post-entry. Biological uptake of chemical constituents known to be toxic has been observed in field and laboratory studies, though generally not at levels inducing acute toxicological impact. Evidence of health effects in biomarker studies suggests that more research is required to understand the impacts of long-term, low-dose exposure to produced water, particularly for marine organisms in early life stages. While there is somewhat limited research in the peer-reviewed literature specific to production chemicals, their impacts appear to be negligible as constituent concentrations have been diluted to the extent that they do not elicit toxic responses, even in cases where they may be intrinsically toxic. 3 ACKNOWLEDGEMENTS I would like to extend a very sincere thank you to my advisors, Dr. Waverly Kallestad and Dr. Catherine LePrevost, for their support and academic assistance over the course of this research.
    [Show full text]