bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.008300; this version posted March 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Localized inhibition in the Drosophila mushroom body 2 3 Hoger Amin1, Raquel Suárez-Grimalt1,3, Eleftheria Vrontou2, and Andrew C. Lin1* 4 5 1 Department of Biomedical Science, University of Sheffield, Firth Court, Western 6 Bank, Sheffield S10 2TN, United Kingdom 7 2 Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, 8 Mansfield Road, Oxford OX1 3SR, United Kingdom 9 3 Present address: Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, 10 Charitéplatz 1, 10117 Berlin, Germany. 11 12 * for correspondence:
[email protected] 13 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.008300; this version posted March 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 14 Abstract 15 16 Many neurons show compartmentalized activity, in which activity does not spread 17 readily across the cell, allowing input and output to occur locally. However, the 18 functional implications of compartmentalized activity for the wider neural circuit are 19 often unclear. We addressed this problem in the Drosophila mushroom body, whose 20 principal neurons, Kenyon cells, receive feedback inhibition from a large, non-spiking 21 interneuron called APL.