Cartographies of Time, Ch. 4

Total Page:16

File Type:pdf, Size:1020Kb

Cartographies of Time, Ch. 4 Cartographies of Time Published by Library of Congress Cataloging-in-Publication Data Princeton Architectural Press Rosenberg, Daniel, 1966– 37 East Seventh Street Cartographies of time / Daniel Rosenberg and Anthony Grafton.—1st ed. New York, New York 10003 p. cm. Includes bibliographical references. For a free catalog of books, call 1.800.722.6657. ISBN 978-1-56898-763-7 (alk. paper) Visit our website at www.papress.com. 1. Chronology, Historical. 2. Chronology, Historical—Maps. 3. History— Philosophy. I. Grafton, Anthony. II. Title. D11.5.R64 2009 © 2010 Princeton Architectural Press 902’.02—dc22 All rights reserved 2008052892 Printed and bound in China 13 12 11 10 4 3 2 1 First edition Cover image: Historical and Biographical Chart of the United States, David Ramsay, 1811. Courtesy of the American Philosophical Society. No part of this book may be used or reproduced in any manner without Managing Editor: Jennifer Thompson written permission from the publisher, except in the context of reviews. Project Editor: Wendy Fuller Designer: Jan Haux Every reasonable attempt has been made to identify owners of copyright. Errors or omissions will be corrected in subsequent editions. Special thanks to: Nettie Aljian, Bree Anne Apperley, Sara Bader, Dorothy Ball, Nicola Bednarek, Janet Behning, Becca Casbon, Carina Cha, Penny (Yuen Pik) Chu, Carolyn Deuschle, Russell Fernandez, Pete Fitzpatrick, Clare Jacobson, Aileen Kwun, Nancy Eklund Later, Linda Lee, Laurie Manfra, John Myers, Katharine Myers, Dan Simon, Andrew Stepanian, Paul Wagner, Joseph Weston, and Deb Wood of Princeton Architectural Press —Kevin C. Lippert, publisher Chapter 4: A New Chart of History For all of the advances in chronological scholarship in the and return to with pleasure. In it, the world is familiar: we early modern period, the graphic ambitions of the chronol- see the world’s peoples; we measure distances at a glance of ogers proved hard to fulfill. The textbooks said over and over an eye or with a compass in hand; we trace the contours of again that chronology and geography were the two eyes of the map so deeply in our imagination that they can never be history. But if this were the case, the early modern history fully erased. The same cannot be said for chronology, a field student was liable to end up with serious problems of depth so dry, difficult, and thankless that it offers nothing more to perception. During the fifteenth and sixteenth centuries, the spirit than a multitude of ugly dates that overwhelm and geographical maps became more sophisticated and pre- frustrate the memory and are then easily forgotten.1 cise, as cartographers abandoned the venerable and durable form of the Ptolemaic map for new conventions and added This from a man with a passion for historical dates. vast amounts of previously unknown information. Even before the coming of the printing press, chro- Like cartography, the study of chronology changed nology was a book-heavy field, dependent on the collec- rapidly in this period. Early modern chronologers employed tion and organization of many precise and discrete pieces new techniques from fields as disparate as astronomy and of information. Print technology facilitated the storage, numismatics and labored tirelessly to incorporate into their reproduction, and dissemination of information in many schemes new information drawn from all over the world. forms, but it was particularly well suited to the needs of But, until the eighteenth century, the field of chronology did chronology, where exact reproduction was a necessity, the not undergo a visual revolution comparable to the one that accumulation of data was paramount, and big, overstuffed took place in geography. The contrast was so striking that, reference books were in high demand. In the fifteenth and as late as 1753, French physician and amateur chronologer sixteenth centuries, new dating techniques led to significant Jacques Barbeu-Dubourg could still write, advances in chronology—Apianus, for example, sought to establish firm chronological footholds by correlating data Geography is a pleasant and gratifying study. It places before from astronomy with received historical accounts—but us an image of the world entire, which we may traverse quickly many of the most striking advances of the period relied Cartographies of Time 96 on innovations in information organization. And, in the Though it would be decades before Rou’s approach following two centuries, the impact of such innovations was attempted again in France, in England, it was taken intensified. In contrast to the type-dominated chronology up almost immediately in A View of Universal History by books of the fifteenth and sixteenth centuries, seventeenth- Francis Tallents, a nonconforming minister and teacher in century chronologies relied heavily on fine engraving, the provincial town of Shrewsbury in the West Midlands which enabled greater and greater feats of data compres- near the border of Wales. Through Tallents’s book, Rou’s sion, a more fluid mixture of image and text, and nearly format passed into wider use, especially in the English dis- unlimited variations in script, layout, and proportion. As senting academies, institutions established from the end of a result, during the second half of the seventeenth century, the seventeenth century to serve students excluded from the precedent of Jean Boulaese, who attempted to condense Oxford and Cambridge on religious grounds. (And it was much of Eusebius into a single chart, was widely pursued. in these very academies that Joseph Priestley, the famous Among the most influential of the synoptic works of scientist and theologian who would revolutionize the field the later seventeenth century were the Tables historiques, of chronography in the 1760s, first encountered them.)4 chronologiques, & généalogiques (Historical, chronological, Eventually, in 1729, the abbé Nicolas Lenglet du and genealogical tables) published in the 1670s in two vol- Fresnoy, author of numerous pedagogical treatises— umes by the French protestant lawyer Jean Rou.2 [ fig.1 ] The including the popular Méthode pour étudier l’histoire work comprised a series of engraved tables that condensed (Method for studying history)—published a similar work huge amounts of chronological and genealogical information in France, the Tables chronologiques de l’histoire universelle on several oversized pages. Influential as they were to become, (Chronological tables of world history).5 To Lenglet du Rou’s charts were not immediately imitated in France. His Fresnoy, the need to push the boundaries of synoptic rep- first volume, on ancient history, was a great success, but his resentation seemed urgent. By the early eighteenth century, second volume on modern history, including the period of the field of published historiography was huge and rapidly the Reformation, proved so controversial that it was banned, growing: he estimated that it had already surpassed 30,000 and Rou was forced to take refuge in the Netherlands.3 volumes. Calculating on the basis of his own prodigious Chapter 4: A New Chart of History 97 Cartographies of Time 98 [1] _______________________________ In 1672 the first volume of Jean Rou’s elegantly engraved Tables historiques, chronologiques, & généalogiques on ancient history was received with acclaim in Paris, but after his modern history tables appeared in 1675, his works were banned for their perceived Protestant content. In 1682 the philosopher Pierre Bayle lamented that Rou’s tables had become almost impossible to find. Chapter 4: A New Chart of History 99 speed and endurance in reading—he sometimes read for subject matter messy enough that many people might like fourteen hours a day—Lenglet du Fresnoy estimated that to have a small chronological cheat sheet to use while they a diligent student could not hope to read more than 1,800 read. Heavy tomes on chronology were all well and good, works of history without making unacceptable sacrifices in but what use were they to the regular reader? memory and comprehension. And, to assure good value for Parsons’s chronography was finely tuned to the con- the intellectual labor, he recommended reading no more temporary uses of books. [ figs. 5–7] For his first edition of than 1,200 such works in a lifetime, a number which might 1689, he commissioned forty-three plates from the engraver allow a person to think “a little about what he reads.”6 John Sturt, simplified Marcel’s complex layout and sym- Lenglet du Fresnoy was among the greatest eighteenth- bolic scheme, and reduced its size even further. As Parsons century promoters of the study of chronology, but in his hoped, his new format was a commercial success, and many work, we can already detect its declining status. Even as editions followed, selling 4,000 copies in about a decade.8 he emphasized the importance of chronology, Lenglet du Though Parsons prized miniaturization, he noticed that in Frensnoy lamented that it was so little valued in relation to some ways the tiny first edition sacrificed too much to con- the prestigious field of history.7 siderations of size. The paper was too thin to write on easily, During the late seventeenth century some chronog- and there was precious little space in which to add annota- raphies grew; others shrank. [ figs. 2–4] Fine engraving tions. He chose thicker, higher quality paper for his second techniques made tiny fonts practical, and by the 1680s the edition and printed on only one side of each page, leaving French writer Guillaume Marcel was publishing politi- the reverse free for notation. cal and ecclesiastical chronologies in pocket size. Marcel’s The importance of new printing and engraving tech- model was copied across Europe. In England, it was adopted niques in the chronographies of the later seventeenth cen- by William Parsons, a former officer in the invading army tury is evident too in lavish productions such as the charts of the Prince of Orange now an entrepreneur who saw a from the Lumen historiae sacrae (Illuminations of sacred potential money-maker in this clever, portable object.
Recommended publications
  • Geometric Manifolds
    Wintersemester 2015/2016 University of Heidelberg Geometric Structures on Manifolds Geometric Manifolds by Stephan Schmitt Contents Introduction, first Definitions and Results 1 Manifolds - The Group way .................................... 1 Geometric Structures ........................................ 2 The Developing Map and Completeness 4 An introductory discussion of the torus ............................. 4 Definition of the Developing map ................................. 6 Developing map and Manifolds, Completeness 10 Developing Manifolds ....................................... 10 some completeness results ..................................... 10 Some selected results 11 Discrete Groups .......................................... 11 Stephan Schmitt INTRODUCTION, FIRST DEFINITIONS AND RESULTS Introduction, first Definitions and Results Manifolds - The Group way The keystone of working mathematically in Differential Geometry, is the basic notion of a Manifold, when we usually talk about Manifolds we mean a Topological Space that, at least locally, looks just like Euclidean Space. The usual formalization of that Concept is well known, we take charts to ’map out’ the Manifold, in this paper, for sake of Convenience we will take a slightly different approach to formalize the Concept of ’locally euclidean’, to formulate it, we need some tools, let us introduce them now: Definition 1.1. Pseudogroups A pseudogroup on a topological space X is a set G of homeomorphisms between open sets of X satisfying the following conditions: • The Domains of the elements g 2 G cover X • The restriction of an element g 2 G to any open set contained in its Domain is also in G. • The Composition g1 ◦ g2 of two elements of G, when defined, is in G • The inverse of an Element of G is in G. • The property of being in G is local, that is, if g : U ! V is a homeomorphism between open sets of X and U is covered by open sets Uα such that each restriction gjUα is in G, then g 2 G Definition 1.2.
    [Show full text]
  • Affine Connections and Second-Order Affine Structures
    Affine connections and second-order affine structures Filip Bár Dedicated to my good friend Tom Rewwer on the occasion of his 35th birthday. Abstract Smooth manifolds have been always understood intuitively as spaces with an affine geometry on the infinitesimal scale. In Synthetic Differential Geometry this can be made precise by showing that a smooth manifold carries a natural struc- ture of an infinitesimally affine space. This structure is comprised of two pieces of data: a sequence of symmetric and reflexive relations defining the tuples of mu- tual infinitesimally close points, called an infinitesimal structure, and an action of affine combinations on these tuples. For smooth manifolds the only natural infin- itesimal structure that has been considered so far is the one generated by the first neighbourhood of the diagonal. In this paper we construct natural infinitesimal structures for higher-order neighbourhoods of the diagonal and show that on any manifold any symmetric affine connection extends to a second-order infinitesimally affine structure. Introduction A deeply rooted intuition about smooth manifolds is that of spaces that become linear spaces in the infinitesimal neighbourhood of each point. On the infinitesimal scale the geometry underlying a manifold is thus affine geometry. To make this intuition precise requires a good theory of infinitesimals as well as defining precisely what it means for two points on a manifold to be infinitesimally close. As regards infinitesimals we make use of Synthetic Differential Geometry (SDG) and adopt the neighbourhoods of the diagonal from Algebraic Geometry to define when two points are infinitesimally close. The key observations on how to proceed have been made by Kock in [8]: 1) The first neighbourhood arXiv:1809.05944v2 [math.DG] 29 Aug 2020 of the diagonal exists on formal manifolds and can be understood as a symmetric, reflexive relation on points, saying when two points are infinitesimal neighbours, and 2) we can form affine combinations of points that are mutual neighbours.
    [Show full text]
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • Lecture Notes on Foliation Theory
    INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial.
    [Show full text]
  • Math 600 Day 6: Abstract Smooth Manifolds
    Math 600 Day 6: Abstract Smooth Manifolds Ryan Blair University of Pennsylvania Tuesday September 28, 2010 Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 1 / 21 Outline 1 Transition to abstract smooth manifolds Partitions of unity on differentiable manifolds. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 2 / 21 A Word About Last Time Theorem (Sard’s Theorem) The set of critical values of a smooth map always has measure zero in the receiving space. Theorem Let A ⊂ Rn be open and let f : A → Rp be a smooth function whose derivative f ′(x) has maximal rank p whenever f (x) = 0. Then f −1(0) is a (n − p)-dimensional manifold in Rn. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 3 / 21 Transition to abstract smooth manifolds Transition to abstract smooth manifolds Up to this point, we have viewed smooth manifolds as subsets of Euclidean spaces, and in that setting have defined: 1 coordinate systems 2 manifolds-with-boundary 3 tangent spaces 4 differentiable maps and stated the Chain Rule and Inverse Function Theorem. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 4 / 21 Transition to abstract smooth manifolds Now we want to define differentiable (= smooth) manifolds in an abstract setting, without assuming they are subsets of some Euclidean space. Many differentiable manifolds come to our attention this way. Here are just a few examples: 1 tangent and cotangent bundles over smooth manifolds 2 Grassmann manifolds 3 manifolds built by ”surgery” from other manifolds Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 5 / 21 Transition to abstract smooth manifolds Our starting point is the definition of a topological manifold of dimension n as a topological space Mn in which each point has an open neighborhood homeomorphic to Rn (locally Euclidean property), and which, in addition, is Hausdorff and second countable.
    [Show full text]
  • Hausdorff Morita Equivalence of Singular Foliations
    Hausdorff Morita Equivalence of singular foliations Alfonso Garmendia∗ Marco Zambony Abstract We introduce a notion of equivalence for singular foliations - understood as suitable families of vector fields - that preserves their transverse geometry. Associated to every singular foliation there is a holonomy groupoid, by the work of Androulidakis-Skandalis. We show that our notion of equivalence is compatible with this assignment, and as a consequence we obtain several invariants. Further, we show that it unifies some of the notions of transverse equivalence for regular foliations that appeared in the 1980's. Contents Introduction 2 1 Background on singular foliations and pullbacks 4 1.1 Singular foliations and their pullbacks . .4 1.2 Relation with pullbacks of Lie groupoids and Lie algebroids . .6 2 Hausdorff Morita equivalence of singular foliations 7 2.1 Definition of Hausdorff Morita equivalence . .7 2.2 First invariants . .9 2.3 Elementary examples . 11 2.4 Examples obtained by pushing forward foliations . 12 2.5 Examples obtained from Morita equivalence of related objects . 15 3 Morita equivalent holonomy groupoids 17 3.1 Holonomy groupoids . 17 arXiv:1803.00896v1 [math.DG] 2 Mar 2018 3.2 Morita equivalent holonomy groupoids: the case of projective foliations . 21 3.3 Pullbacks of foliations and their holonomy groupoids . 21 3.4 Morita equivalence for open topological groupoids . 27 3.5 Holonomy transformations . 29 3.6 Further invariants . 30 3.7 A second look at Hausdorff Morita equivalence of singular foliations . 31 4 Further developments 33 4.1 An extended equivalence for singular foliations . 33 ∗KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium.
    [Show full text]
  • DIFFERENTIAL GEOMETRY COURSE NOTES 1.1. Review of Topology. Definition 1.1. a Topological Space Is a Pair (X,T ) Consisting of A
    DIFFERENTIAL GEOMETRY COURSE NOTES KO HONDA 1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA 1.1. Review of topology. Definition 1.1. A topological space is a pair (X; T ) consisting of a set X and a collection T = fUαg of subsets of X, satisfying the following: (1) ;;X 2 T , (2) if Uα;Uβ 2 T , then Uα \ Uβ 2 T , (3) if Uα 2 T for all α 2 I, then [α2I Uα 2 T . (Here I is an indexing set, and is not necessarily finite.) T is called a topology for X and Uα 2 T is called an open set of X. n Example 1: R = R × R × · · · × R (n times) = f(x1; : : : ; xn) j xi 2 R; i = 1; : : : ; ng, called real n-dimensional space. How to define a topology T on Rn? We would at least like to include open balls of radius r about y 2 Rn: n Br(y) = fx 2 R j jx − yj < rg; where p 2 2 jx − yj = (x1 − y1) + ··· + (xn − yn) : n n Question: Is T0 = fBr(y) j y 2 R ; r 2 (0; 1)g a valid topology for R ? n No, so you must add more open sets to T0 to get a valid topology for R . T = fU j 8y 2 U; 9Br(y) ⊂ Ug: Example 2A: S1 = f(x; y) 2 R2 j x2 + y2 = 1g. A reasonable topology on S1 is the topology induced by the inclusion S1 ⊂ R2. Definition 1.2. Let (X; T ) be a topological space and let f : Y ! X.
    [Show full text]
  • Dynamics and the Godbillon-Vey Class of C1 Foliations∗
    Dynamics and the Godbillon-Vey Class of C1 Foliations∗ Steven Hurder † and R´emiLangevin Abstract We give a direct proof that a codimension–one, C2-foliation F with non-zero Godbillon–Vey class GV (F) ∈ H3(M) has a hyperbolic resilient leaf. Our approach is based on methods of C1-dynamics, and does not use the classification theory of C2-foliations. We first prove that for a codimension–one C1-foliation with non-trivial Godbillon measure, the set of infinitesimally expanding points E(F) has positive Lebesgue measure. We then prove that if E(F) has positive measure for a C1-foliation F, then F must have a hyperbolic resilient leaf and hence its geometric entropy must be positive. For a C2-foliation, GV (F) non-zero implies the Godbillon measure is also non-zero, and the result follows. These results apply for both the case when M is compact, and when M is an open manifold. Contents 1 Introduction 2 2 Foliation Basics 4 3 The Godbillon Measure 8 4 |E(F)| = 0 implies gF = 0 13 5 |E(F)| > 0 implies h(F) > 0 17 6 Open manifolds 25 ∗preprint original date: September 10, 2000; updated for publication: March 27, 2004 †Partially supported by NSF Grant DMS-9704768 1 1 Introduction In 1971, Godbillon and Vey [18] introduced their invariant GV (F) ∈ H3(M) for a codimension-one C2-foliation F of a manifold M. While the definition of the Godbillon-Vey class is elementary, understanding its geometric and dynamical meaning remains an open problem. There have been many results and much progress on this problem, especially for codimension one foliations [15, 31], though far less progress has been made for the case of foliations of codimension greater than one (cf.
    [Show full text]
  • Appendix a Topology of Manifolds
    Appendix A Topology of manifolds A.1 Toplogical notions A topological space is a set X together with a collection of subsets U ⊆ X called open subsets, with the following properties: • /0;X are open. • If U;U0 are open then U \U0 is open. S • For any collection Ui of open subsets, the union i Ui is open. m The collection of open subsets is called the topology of X. The space R has a standard topology given by the usual open subsets. Likewise, the open subsets of a manifold M define a topology on M. For any set X, one has the trivial topology where the only open subsets are /0and X, and the discrete topology where every subset is considered open. An open neighborhod of a point p is an open subset containing it. A topological space is called Hausdorff of any two distinct points have disjoint open neighborhoods. Any subset A ⊆ X has a subspace topology, with open sets the collection of all intersections U \ A such that U ⊆ X is open. Given a surjective map q : X ! Y, the space Y inherits a quotient topology, whose open sets are all V ⊆ Y such that the pre-image q−1(V) = fx 2 Xj q(x) 2 Vg is open. A subset A is closed if its complement XnA is open. Dual to teh staments for open sets, one has that the intersection of an arbitrary collection of closed sets is closed, and the union of two closed sets is closed. For any subset A, denote by A its closure, given as the smallest closed subset containing A.
    [Show full text]
  • On Colimits in Various Categories of Manifolds
    ON COLIMITS IN VARIOUS CATEGORIES OF MANIFOLDS DAVID WHITE 1. Introduction Homotopy theorists have traditionally studied topological spaces and used methods which rely heavily on computation, construction, and induction. Proofs often go by constructing some horrendously complicated object (usually via a tower of increasingly complicated objects) and then proving inductively that we can understand what’s going on at each step and that in the limit these steps do what is required. For this reason, a homotopy theorist need the freedom to make any construction he wishes, e.g. products, subobjects, quotients, gluing towers of spaces together, dividing out by group actions, moving to fixed points of group actions, etc. Over the past 50 years tools have been developed which allow the study of many different categories. The key tool for this is the notion of a model category, which is the most general place one can do homotopy theory. Model categories were introduced by the Fields Medalist Dan Quillen, and the best known reference for model categories is the book Model Categories by Mark Hovey. Model categories are defined by a list of axioms which are all analogous to properties that the category Top of topological spaces satisfies. The most important property of a model category is that it has three distinguished classes of morphisms–called weak equivalences, cofibrations, and fibrations–which follow rules similar to the classes of maps with those names in the category Top (so the homotopy theory comes into play by inverting the weak equivalences to make them isomorphisms). The fact that homotopy theorists need to be able to do lots of constructions is contained in the axiom that M must be complete and cocomplete.
    [Show full text]
  • [Math.GN] 25 Dec 2003
    Problems from Topology Proceedings Edited by Elliott Pearl arXiv:math/0312456v1 [math.GN] 25 Dec 2003 Topology Atlas, Toronto, 2003 Topology Atlas Toronto, Ontario, Canada http://at.yorku.ca/topology/ [email protected] Cataloguing in Publication Data Problems from topology proceedings / edited by Elliott Pearl. vi, 216 p. Includes bibliographical references. ISBN 0-9730867-1-8 1. Topology—Problems, exercises, etc. I. Pearl, Elliott. II. Title. Dewey 514 20 LC QA611 MSC (2000) 54-06 Copyright c 2003 Topology Atlas. All rights reserved. Users of this publication are permitted to make fair use of the material in teaching, research and reviewing. No part of this publication may be distributed for commercial purposes without the prior permission of the publisher. ISBN 0-9730867-1-8 Produced November 2003. Preliminary versions of this publication were distributed on the Topology Atlas website. This publication is available in several electronic formats on the Topology Atlas website. Produced in Canada Contents Preface ............................................ ............................v Contributed Problems in Topology Proceedings .................................1 Edited by Peter J. Nyikos and Elliott Pearl. Classic Problems ....................................... ......................69 By Peter J. Nyikos. New Classic Problems .................................... ....................91 Contributions by Z.T. Balogh, S.W. Davis, A. Dow, G. Gruenhage, P.J. Nyikos, M.E. Rudin, F.D. Tall, S. Watson. Problems from M.E. Rudin’s Lecture notes in set-theoretic topology ..........103 By Elliott Pearl. Problems from A.V. Arhangel′ski˘ı’s Structure and classification of topological spaces and cardinal invariants ................................................... ...123 By A.V. Arhangel′ski˘ıand Elliott Pearl. A note on P. Nyikos’s A survey of two problems in topology ..................135 By Elliott Pearl.
    [Show full text]
  • Sufficient Conditions for Paracompactness of Manifolds
    Notes by David Groisser, Copyright c 2012 Sufficient Conditions for Paracompactness of Manifolds Definition 0.1 Let X be a topological space. 1. Given two open covers U = fUαgα2A; V = fVβgβ2B of X, we say that V refines (or is a refinement of) U if for all β 2 B, there exists α 2 A such that Vβ ⊂ Uα. 2. A collection of subsets U = fUαgα2A of X is called locally finite if for all x 2 X, there exists an open neighborhood W of x intersecting Uα for only finitely many α 2 A. 3. X is paracompact if every open cover of X admits a locally finite refinement. Remark 0.2 (1) Every subcover of an open cover U is a refinement of U (hence \compact" implies \paracompact"), but a refinement of U need not be a subcover of U. (2) If a cover V of X is locally finite, then for all x 2 X, only finitely many elements of V contain x. The converse is false (i.e. \pointwise finite” does not imply \locally finite”). Since paracompactness is not the most transparent condition in the world, and since its definition does not make it obvious how to verify that a space is paracompact, we give in these notes some conditions that suffice for paracompactness of a finite- dimensional Hausdorff manifold. Henceforth in these notes, \manifold" always means \topological, finite-dimensional manifold". When we want to make statements about smooth manifolds, we will say so explicitly. The three conditions we consider for a manifold M are • M is σ-compact (see below).
    [Show full text]