TROPICAL YAMS and THEIR POTENTIAL Part 2. Dioscorea Bulbifera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arrowroot Production and Utilization in the Marshall Islands
J. Ethnobiol. 14(2):211-234 Winter 1994 TRADITIONAL ARROWROOT PRODUCTION AND UTILIZATION IN THE MARSHALL ISLANDS DIRK H. R. SPENNEMANN Johnstone Centre of Parks, RecreJltion, and Heritage Charles Sturt University p. 0. Box 789 Albury, NSW 2640 Australia ABSTRACT.-This paperexamines the traditional and modern role of Polynesian arrowroot (Tacca leontopetaloides) in the subsistence and market economy of the Republic of the Marshall Islands, a group of atolls in the central equatorial Pacific Ocean. The plant is discussed in its biological and nutritional parameters. Aspects of traditional arrowroot production, starch extraction, and food preparation are examined. In the final section the potential role of the root crop in modern Mar shallese society is discussed. RESUMEN.-Este trabajo examina el papel tradicional y moderno de Tacca leon topetaloides en la economfa de subsistencia y de mercado en la Republica de las Islas Marshall, un grupo de Islas coralinas en el Oceano Pacifico ecuatoria1 cen tral. Se discuten los parimetros biol6gicos y nutricionales de esta planta, y se examinan los aspectos de la producci6n tradicional, la extracci6n de almid6n y la preparaci6n como alimento. En la secci6n final se discute el papel potencial de este cu1tivo en 1a sociedad moderna de las Islas Marshall. REsUME.-Nous examinons les roles traditionels et modernes de l'arrowroot Polynesien (raWl leontopetaloides) dans la subsistance et I'economie de la Repub Iique des Ilsles Marshalles, un groupe d'attoUs de l'Ocean Pacifique Equatorial Central. Les parametres biologiques et nutritifs de cette plante sont consideres. NOllS examinons dif£erents aspects de production traditionelle d'arrowroot, ainsi que I'extraction de la £ecule et Ia preparation des aliments. -
Air Potato (Dioscorea Bulbifera)
Air potato (Dioscorea bulbifera) What is it? A vigorously twining, very invasive vine with heart-shaped leaves growing from an underground tuber. The Florida Exotic Pest Plant Council (www.fleppc.org) considers this one of Florida’s worst weed pests. Where is it from? Native to tropical Asia. How did it get here and when? Likely introduced as an ornamental and food plant around 1905. What harm does it cause? Grows rapidly, covering and displacing desirable native plant species needed by wildlife. How can I help? 1. Learn to identify air potato vines. Please don’t transport or plant the vines or “potatoes.” 2. Remove them from your home landscape and neighborhood. 3. If you see the vines or “potatoes” along our trails, please remove and bag them. Be sure to dispose of them in the trash cans on site. What more can I do? 1. Join the Friends of Red Bug Slough Preserve to help out with organized air potato removal events and “spud busting” work days. 2. Educate others to help them identify and remove this highly invasive pest plant. 3. For additional information on control, go to: http://bcrcl.ifas.ufl.edu/airpotatobiologicalcontrol.shtml The good news is…there is HOPE!! 1. The air potato leaf beetle (Lilioceris cheni) from China has been studied for several years and tested on hundreds of plant species to make sure it only feeds on air potato vines. 2. Extensive testing resulted in essentially no damage to any other plants. 3. The USDA has determined it’s now safe to request and release these beetles in Florida. -
Diversity and Distribution of the Genus Dioscorea In
DIVERSITY AND DISTRIBUTION INTRODUCTION • The genus Dioscorea is one of the largest groups among OF THE GENUS DIOSCOREA IN monocotyledons belonging to the family Dioscoreaceae. • The members are commonly known as yams and are widely WESTERN GHATS cultivated for its edible tubers throughout tropics and occupies 3rd most important food crops in the world, next to cereals and pulses. • The word yams comes from Portuguese or Spanish name as “Inhame” which means “to eat”. Elsamma Joseph (Arackal) • The genus is distributed mainly in three centers of diversity A.G. Pandurangan & S. Ganeshan namely South Africa, South East Asia and Latin America. • The genus Dioscorea represents 850 spp. (Mabberley, 1997) and in India reported the occurrence of 32 spp. (Prain and Burkill, 1936, 1939) of which 17 are distributed in W. Ghats. • The genus shows close affinity towards dicotyledons by the presence of petiolate compound leaves, non sheathing leaf base, reticulate venation etc. Tropical Botanic Garden and Research Institute Palode, Thiruvananthapuram, Kerala REASONS FOR UNDERTAKING THE REASONS FOR UNDERTAKING THE STUDY STUDY…….contd • The taxonomy of quite a few species in this genus is considered • Many of the Dioscorea species serve as a “life saving” plant to be very problematic ( Prain and Burkill, 1936, 1939; Velayudan, group to marginal farmers and forest dwelling communities 1998) due to their continuous variability of morphological during the period of food scarcity (Arora and Anjula pandey, characters especially in aerial parts such as leaves and bulbils. 1996) This makes it difficult for taxonomists to segregate distinctly the various taxa of the genus. • Most of the tubers are edible and few are also used as medicinal. -
Pacific Root Crops
module 4 PACIFIC ROOT CROPS 60 MODULE 4 PACIFIC ROOT CROPS 4.0 ROOT CROPS IN THE PACIFIC Tropical root crops are grown widely throughout tropical and subtropical regions around the world and are a staple food for over 400 million people. Despite a growing reliance on imported flour and rice products in the Pacific, root crops such as taro (Colocasia esculenta), giant swamp taro (Cyrtosperma chamissonis), giant taro (Alocasia macrorhhiza), tannia (Xanthosoma sagittifolium), cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yams (Dioscorea spp.) remain critically important components of many Pacific Island diets, particularly for the large rural populations that still prevail in many PICTs (Table 4.1). Colocasia taro, one of the most common and popular root crops in the region, has become a mainstay of many Pacific Island cultures. Considered a prestige crop, it is the crop of choice for traditional feasts, gifts and fulfilling social obligations in many PICTs. Though less widely eaten, yams, giant taro and giant swamp taro are also culturally and nutritionally important in some PICTs and have played an important role in the region’s food security. Tannia, cassava and sweet potato are relatively newcomers to the Pacific region but have rapidly gained traction among some farmers on account of their comparative ease of establishment and cultivation, and resilience to pests, disease and drought. Generations of accumulated traditional knowledge relating to seasonal variations in rainfall, temperature, winds and pollination, and their influence on crop planting and harvesting times now lie in jeopardy given the unparalleled speed of environmental change impacting the region. -
Weed Notes: Dioscorea Bulbifera, D. Alata, D. Sansibarensis Tunyalee
Weed Notes: Dioscorea bulbifera, D. alata, D. sansibarensis TunyaLee Morisawa The Nature Conservancy Wildland Invasive Species Program http://tncweeds.ucdavis.edu 27 September 1999 Background: Dioscorea bulbifera L. is commonly called air-potato, potato vine, and air yam. The genus Dioscorea (true yams) is economically important world-wide as a food crop. Two-thirds of the worldwide production is grown in West Africa. The origin of D. bulbifera is uncertain. Some believe that the plant is native to both Asia and Africa. Others believe that it is a native of Asia and was subsequently introduced into Africa (Hammer, 1998). In 1905, D. bulbifera was imported into Florida for scientific study. A perennial herbaceous vine with annual stems, D. bulbifera climbs to a height of 9 m or more by twining to the left. Potato vine has alternate, orbicular to cordate leaves, 10-25 cm wide, with prominent veins (Hammer, 1998). Dioscorea alata (white yam), also found in Florida, is recognizable by its winged stems. These wings are often pink on plants growing in the shade. Unlike D. bulbifera, D. alata twines to the right. Native to Southeast Asia and Indo-Malaysia, this species is also grown as a food crop. The leaves are heart-shaped like D. bulbifera, but more elongate and primarily opposite. Sometimes the leaves are alternate in young, vigorous stems and often one leaf is aborted and so the vine appears to be alternate, but the remaining leaf scar is still visible. Stems may root and develop underground tubers that can reach over 50 kg in weight if they touch damp soil. -
Micronesica 38(1):93–120, 2005
Micronesica 38(1):93–120, 2005 Archaeological Evidence of a Prehistoric Farming Technique on Guam DARLENE R. MOORE Micronesian Archaeological Research Services P.O. Box 22303, GMF, Guam, 96921 Abstract—On Guam, few archaeological sites with possible agricultural features have been described and little is known about prehistoric culti- vation practices. New information about possible upland planting techniques during the Latte Phase (c. A.D. 1000–1521) of Guam’s Prehistoric Period, which began c. 3,500 years ago, is presented here. Site M201, located in the Manenggon Hills area of Guam’s interior, con- tained three pit features, two that yielded large pieces of coconut shell, bits of introduced calcareous rock, and several large thorns from the roots of yam (Dioscorea) plants. A sample of the coconut shell recovered from one of the pits yielded a calibrated (2 sigma) radiocarbon date with a range of A.D. 986–1210, indicating that the pits were dug during the early Latte Phase. Archaeological evidence and historic literature relat- ing to planting, harvesting, and cooking of roots and tubers on Guam suggest that some of the planting methods used in historic to recent times had been used at Site M201 near the beginning of the Latte Phase, about 1000 years ago. I argue that Site M201 was situated within an inland root/tuber agricultural zone. Introduction The completion of numerous archaeological projects on Guam in recent years has greatly increased our knowledge of the number and types of prehis- toric sites, yet few of these can be considered agricultural. Descriptions of agricultural terraces, planting pits, irrigation canals, or other agricultural earth works are generally absent from archaeological site reports, although it has been proposed that some of the piled rock alignments in northern Guam could be field boundaries (Liston 1996). -
Dioscorea Batatas (Dioscorea Polystachya) Chinese Yam
Dioscorea polystachya Dioscorea batatas (Dioscorea polystachya) Chinese yam Introduction The genus Dioscorea includes more than 600 species worldwide in tropical and temperate regions. According to early publications of Chinese flora, 49 species are distributed in China; however, in the updated versions, there are 53 species (listed in the next section). Dioscorea is a genus of great economic value as an important food plant. Some species are also resources for the pharmaceutical industry[28][29]. Species of Dioscorea in China Leaves of Dioscora batatas. Scientific Name Scientific Name D. alata L. D. kamoonensis Kunth Taxonomy D. althaeoides R. Knuth D. linearicordata Prain et Burkill Family: Dioscoreaceae D. aspersa Prain et Burkill D. martini Prain et Burkill Genus: Dioscorea L. D. banzuana Péi et C. T. Ting D. melanophyma Prain et Burkill There are many scientific synonyms ‡ D. benthamii Prain et Burkill D. menglaensis H. Li and common names for D. batatas. D. bicolor Prain et Burkill D. nipponica Makino Dioscorea batatas is called Chinese yam, D. biformifolia Péi et C. T. Ting D. nitens Prain et Burkil cinnamon yam, wild yam, or common D. birmanica Prain et Burkill† D. panthaica Prain et Burkill yam; it is referred to as Dioscorea D. bulbifera L. D. pentaphylla L. polystachya and Dioscorea opposita. D. chingii Prain et Burkill D. persimilis Prain et Burkill It is also synonymous with Dioscorea D. cirrhosa Loar. D. poilanei Prain et Burkill oppositifolia. Dioscorea batatas is the taxonomic name generally used in the D. collettii Hook. f. D. polystachya Turczaninow‡ United States[29]. D. cumingii Prain et Burkill† D. -
Air Potato Leaf Beetle Scientific Name:Lilioceris Cheni Gressitt and Kimoto (Coleoptera: Chrysomelidae)
Air Potato Leaf Beetle Scientific name: Lilioceris cheni Gressitt and Kimoto (Coleoptera: Chrysomelidae) Introduction Air potato, Dioscorea bulbifera L. (Dioscoreales: Dioscoreaceae), is a fast- growing perennial vine native to Asia and Africa. It has been introduced into the southeastern United States on multiple occasions and has become established in Hawaii, Florida, Georgia, Alabama, Mississippi, Louisiana and Texas. Currently air potato is registered as a noxious weed in Florida and Alabama (USDA 2015). In Louisiana, populations of D. bulbifera have been recorded in 13 parishes (Figure 1). The air potato vine quickly grows to cover large areas and outcompetes native vegetation. It proliferates freely from vegetative bulbils Figure 1. Distribution of air potato (Dioscorea bulbifera) in the United States. Source: EDDMapS.org formed in the leaf axils and is difficult to remove, requiring repeated mechanical and herbicidal treatments. A successful biological control program against D. bulbifera was initiated in Florida in 2011 using the air potato leaf beetle, Lilioceris cheni (Rayamajhi et al., 2014). Extensive laboratory and open field studies showed L. cheni to be extremely host-specific, feeding and developing only on D. bulbifera and not on related species of Dioscorea found in Florida including D. floridana, D. villosa, and D. sansibarensis (Lake et al., 2015). Rearing and release of L. cheni on public and private lands is currently conducted by the United States Department of Agriculture (USDA), the Florida Department of Agriculture and Consumer Services (FDACS) and the University of Florida. Establishment of the beetle has been confirmed across Florida. Based on its success in Florida, there is reason to believe that L. -
Dioscorea Bulbifera) in Florida Author(S): Matthew D
Geographic Origins and Genetic Diversity of Air-Potato (Dioscorea bulbifera) in Florida Author(s): Matthew D. Croxton, Michael A. Andreu, Dean A. Williams, William A. Overholt, and Jason A. Smith Source: Invasive Plant Science and Management, 4(1):22-30. 2011. Published By: Weed Science Society of America DOI: http://dx.doi.org/10.1614/IPSM-D-10-00033.1 URL: http://www.bioone.org/doi/full/10.1614/IPSM-D-10-00033.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Invasive Plant Science and Management 2011 4:22–30 Geographic Origins and Genetic Diversity of Air-Potato (Dioscorea bulbifera) in Florida Matthew D. Croxton, Michael A. Andreu, Dean A. Williams, William A. Overholt, and Jason A. Smith* In Florida, air-potato is an invasive weed with high management priority, which may soon be targeted using classical biological control. -
Biological Control for Air Potato Has Arrived!
Biological Control for Air Potato Has Arrived! By Min Rayamajhi1, Eric Rohrig2, Ted Center1, Ellen Lake1, Melissa Smith1, Veronica Manrique3, Rodrigo Diaz3, Stephen Hight4, Allen Dray1, Kenneth Hibbard5 and William Overholt3 ir potato (Dioscorea bulbifera) in Florida may have finally met its match — a voracious leaf-feeding beetle from Asia named Lilioceris cheni. The beetle Awas first discovered in Nepal by scientists from the USDA/ARS Invasive Plant Research Laboratory in Fort Lauderdale (IPRL), and later the same species was found in the Yunnan Province of China. Adult beetles are either bright red (Chinese biotype) or brown (Nepalese biotype), and about 9 mm (3/8”) long (Figure 1). They live for up to six months, during which they lay as many as 4,000 eggs. Females lay eggs in clusters on the undersides of young, expanding S. PORTER S. Figure 1a. Adult Lilioceris cheni, Chinese. air potato leaves (Figure 2). Adult females bite the veins of the leaves on which they oviposit, causing the expanding leaves to curl at the edges and cup the eggs, perhaps providing some protection from inclement weather or egg predators. Eggs hatch in about 4 days, and the reddish colored larvae feed on leaves for around 10 days (Figure 3). Late stage larvae and adults occasionally feed on bulbils (aerial tubers). Fully mature larvae drop to the ground and burrow into the soil where they secrete a whitish oral substance that hardens into a cocoon. Several pupae often clump together within this material. Adults emerge from the soil after about 16 days and begin to lay eggs 15 days later (Tishechkin et W. -
Lilioceris Egena Air Potato Biocontrol Environmental Assessment
United States Department of Field Release of the Beetle Agriculture Lilioceris egena (Coleoptera: Marketing and Regulatory Chrysomelidae) for Classical Programs Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Field Release of the Beetle Lilioceris egena (Coleoptera: Chrysomelidae) for Classical Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. -
The Environmental Reference Handbook
THE ENVIRONMENTAL REFERENCE HANDBOOK for SANIBEL, A BARRIER ISLAND SANCTUARY HOW AND WHY TO JOIN IN THE CONTINUING STEWARDSHIP OF OUR SANCTUARY ISLAND T HE ENV IRONMENT AL REF ERENCE HANDB OOK for SANIBEL, A BARRIER ISLAND SANCTUARY 2009 Second Edition COMPILED BY THE VEGETATION COMMITTEE OF THE CITY OF SANIBEL PUBLISHED BY THE CITY OF SANIBEL We would like to acknowledge and thank the following people who were so generous with their time, enthusiasm, and expertise during the compilation of this handbook. Some contributed information, others answered questions, offered advice, proof-read sections, supplied photographs, and helped with formatting. Kristie Anders Chris Andrews Dr. P.J. Deitschel Holly Downing Jenny Evans Richard Finkle Chris Lechowicz Erick Lindblad Patrick Martin Neil Payne Cheryl Parrott Cathy Paus Dee Serage Century Brad Smith Pamela Smith Melissa Upton Thank you from The City of Sanibel and The Vegetation Committee The City of Sanibel and the Vegetation Committee gratefully acknowledge financial support from the J.N.”Ding” Darling National Wildlife Refuge towards the publication of this handbook. TABLE OF CONTENTS INTRODUCTION ……………………………………………………. 1 CITY OF SANIBEL VISION STATEMENT ………………………. 3 VEGETATION Native Plants ………………………………………………………. 6 Native Species of Special Interest: Cabbage Palm (Sabal palmetto) Mangroves Landscaping for Wildlife Vegetation Standards for Native Plants Exotic (Non-Native) Plants ...................................................……. 10 Invasive Exotic Plants Photos of Eight Prohibited Invasive Exotic Plants Vegetation Standards for Invasive Exotic Plants Brazilian Pepper Eradication Program Australian Pines Other Exotic Vegetation Coastal Construction Control Line (CCCL) Gulf Beach Zone ..........................................................…………….. 14 Importance of Native Vegetation and Beach Erosion Control Vegetation Standards to Protect Native Plants in the Gulf Beach Zone Australian Pines in the Gulf Beach Zone Soil, Compost, Mulch, and Sod ......................................................