A&A 600, A62 (2017) Astronomy DOI: 10.1051/0004-6361/201629371 & c ESO 2017 Astrophysics The hybrid disks: a search and study to better understand evolution of disks? J. Péricaud1; 2, E. Di Folco1; 2, A. Dutrey1; 2, S. Guilloteau1; 2, and V. Piétu3 1 Univ. Bordeaux, LAB, UMR 5804, 33615 Pessac, France e-mail:
[email protected] 2 CNRS, LAB, UMR 5804, 33615 Pessac, France 3 IRAM, 300 rue de la piscine, 38406 Saint-Martin-d’Hères, France Received 22 July 2016 / Accepted 1 December 2016 ABSTRACT Context. The increased sensitivity of millimeter-wave facilities now makes possible the detection of low amounts of gas in debris disks. Some of the gas-rich debris disks harbor peculiar properties, with possible pristine gas and secondary generated dust. The origin of the gas in these hybrid disks is strongly debated and the current sample is too sparse to understand this phenomenon. Aims. More detections are necessary to increase the statistics on this population. Lying at the final stages of evolution of proto- planetary disks and at the beginning of the debris disk phase, these objects could provide new insight into the processes involved in the making of planetary systems. Methods. We carried out a deep survey of the CO J = 2 ! 1 and CO J = 3 ! 2 lines with the APEX and IRAM radiotelescopes in young debris disks selected according to hybrid disk properties. The survey is complemented with a bibliographic study of the ratio between the emission of the gas and the continuum (S CO/Fcont) in CTTS, Herbig Ae, WTTS, hybrid, and debris disks.