Various Treatments for Vitiligo: Problems Associated and Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Phototoxicity of 7-Oxycoumarins with Keratinocytes in Culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E
Bioorganic Chemistry 89 (2019) 103014 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Phototoxicity of 7-oxycoumarins with keratinocytes in culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E. Heckc, Thomas M. Marianob, Robert D. Rappa, Michele Jettera, Keith Kardosa, Marilyn Whittemored, Eric Akyeaa, Ivan Jabine, Jeffrey D. Laskinb, Ned D. Heindela a Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA b Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA c Department of Environmental Science, New York Medical College, Valhalla, NY 10595, USA d Buckman Laboratories, 1256 N. McLean Blvd, Memphis, TN 38108, USA e Laboratoire de Chimie Organique, Université Libre de Bruxelles, B-1050 Brussels, Belgium ARTICLE INFO ABSTRACT Keywords: Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit 7-hydroxycoumarins growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced 7-oxycoumarins lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of Furocoumarins the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also Psoralens on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the Methoxsalen pyrone ring. Coumarins with electron withdrawing moieties – cyano and fluoro at C – were considerably less 8-MOP 3 Phototoxicity active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were PAM212 keratinocytes found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking. -
Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate. -
Supplementary Tables, Figures and Other Documents
Clinical Relevance of a 16-Gene Pharmacogenetic Panel Test for Medication Management in a Cohort of 135 Patients David Niedrig1,2, Ali Rahmany1,3, Kai Heib4, Karl-Dietrich Hatz4, Katja Ludin5, Andrea M. Burden3, Markus Béchir6, Andreas Serra7, Stefan Russmann1,3,7,* 1 drugsafety.ch; Zurich, Switzerland 2 Hospital Pharmacy, Clinic Hirslanden Zurich; Zurich Switzerland 3 Swiss Federal Institute of Technology Zurich (ETHZ); Zurich, Switzerland 4 INTLAB AG; Uetikon am See, Switzerland 5 Labor Risch, Molecular Genetics; Berne, Switzerland 6 Center for Internal Medicine, Clinic Hirslanden Aarau; Aarau, Switzerland 7 Institute of Internal Medicine and Nephrology, Clinic Hirslanden Zurich; Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41 (0)44 221 1003 Supplementary Tables, Figures and Other Documents Figure S1: Example of credit-card sized pharmacogenomic profile issued to patients 1 Table S2: SNPs analyzed by the 16-gene panel test Gene Allele rs number ABCB1 Haplotypes 1236-2677- rs1045642 ABCB1 3435 rs1128503 ABCB1 rs2032582 COMT Haplotypes 6269-4633- rs4633 COMT 4818-4680 rs4680 COMT rs4818 COMT rs6269 CYP1A2 *1C rs2069514 CYP1A2 *1F rs762551 CYP1A2 *1K rs12720461 CYP1A2 *7 rs56107638 CYP1A2 *11 rs72547513 CYP2B6 *6 rs3745274 CYP2B6 *18 rs28399499 CYP2C19 *2 rs4244285 CYP2C19 *3 rs4986893 CYP2C19 *4 rs28399504 CYP2C19 *5 rs56337013 CYP2C19 *6 rs72552267 CYP2C19 *7 rs72558186 CYP2C19 *8 rs41291556 CYP2C19 *17 rs12248560 CYP2C9 *2 rs1799853 CYP2C9 *3 rs1057910 CYP2C9 *4 rs56165452 CYP2C9 *5 rs28371686 CYP2C9 *6 rs9332131 CYP2C9 -
Comparison of Two Diluents of 1% Methoxsalen in the Treatment of Vitiligo
Net Letter eye care/cosmetic products should also be tested. Though anterior chamber after instillation of 10% phenylephrine phenylephrine is widely used by ophthalmologists in India hydrochloride solution. Br J Ophthalmol 1974;55:554-9. in nonhypertensive adults as a mydriatic agent to obtain 2. Wigger-Alberti W, Elsner P, Wuthrich B. Allergic contact maximum pupillary dilatation prior to fundus examination dermatitis to phenylephrine. Allergy 1998;53:217-8. 3. Yamamoto A, Harada S, Nakada T, Iijima M. Contact and assessment of refractory errors, allergic contact dermatitis to phenylephrine hydrochloride eyedrops. Clin dermatitis has not been reported from this country so far. Exp Dermatol 2004:29;200-1. This may be partly due to a low index of suspicion or failure 4. Herbst RA, Uter W, Pirker C, Geier J, Frosch PJ. Allergic and to perform patch tests in patients with transient and self- non-allergic periorbital dermatitis: Patch test results of the healing periorbital dermatitis. Information Network of the Department of Dermatology during a 5-year period. Contact Dermatitis 2004;51:13-9. RREFERENCESEFERENCES 5. Borch JE, Elmquist JS, Bindslevjensen C, Anderson KE. Phenylephrine and acute periorbital dermatitis. Contact 1. Agarwall Jl, Beveridge B. Liberation of iris pigment in the Dermatitis 2005;53:298-9. CComparisonomparison ofof twotwo ddiluentsiluents ooff 11%% mmethoxsalenethoxsalen inin thethe ttreatmentreatment ooff vvitiligoitiligo KKiraniran VV.. GGodseodse Consultant Dermatologist, Shree Skin Center and Laboratory, Mumbai, India AAddressddress fforor ccorrespondence:orrespondence: Dr. Kiran Godse, Shree Skin Center and Laboratory, 21/22, L market, Sector 8, Nerul, Navi Mumbai - 400 706, India. E-mail: [email protected] Sir, less than 20% of the body surface area. -
Pharmaceuticals As Environmental Contaminants
PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational -
And Citrus Fruits
Journal of the Science of Food and Agriculture J Sci Food Agric 87:2152–2163 (2007) Analysis of furanocoumarins in vegetables (Apiaceae) and citrus fruits (Rutaceae) Radek Peroutka, Veraˇ Schulzova,´ ∗ Petr Botek and Jana Hajslovˇ a´ Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka´ 3, 166 28 Prague 6, Czech Republic Abstract: Several alternative approaches applicable for the analysis of furanocoumarins, toxic components occurring in some fruits and vegetables representing both Apiaceae and Rutaceae families, were tested in our study. Limits of detection (LODs) for angelicin, psoralen, bergapten, xanthotoxin, trioxsalen, isopimpinellin, sphondin, pimpinellin and isobergapten obtained by GC/MS (SIM) were in the range 0.01–0.08 µgg−1.Slightly higher LODs (0.02–0.20 µgg−1) were achieved by LC/MS–MS. The latter is the only alternative for analysis of bergamottin (LOD = 0.01 µgg−1) in citrus fruits because this furanocoumarin is unstable under GC conditions. Regardless of the determination step used, the repeatability of the measurements (expressed as RSD) did not exceed 10%. As shown in our study the levels of furanocoumarins in celery, celeriac, parsnip, carrot, lemon and other foods obtained at a retail market varied over a wide range; the highest contents were determined in parsnip, while the levels of these toxins in carrots and citrus pulps were relatively low. 2007 Society of Chemical Industry Keywords: furanocoumarins; GC/MS; LC/MS–MS; fruits; vegetables INTRODUCTION and fruit of some of these, e.g. figs, representing the Furanocoumarins are toxic secondary metabolites that last family, is also used for human consumption. -
Natural Coumarins: QSRT Approaches Regarding Their Genotoxicity
Natural coumarins: QSRT approaches regarding their genotoxicity Estela Guardado Yordi,1,2* Maria João Matos,2 Lourdes Santana,2 Eugenio Uriarte2, Orlando Abreu1 and Enrique Molina Pérez2,3 1 Universidad de Camagüey “Ignacio Agramonte Loynaz”, Facultad de Química, Departamento de Ciencia y Tecnología de los alimentos, Camagüey – Cuba; [email protected] [email protected] 2 Universidad de Santiago de Compostela, Facultad de Farmacia, Departamento de Química Orgánica, Santiago de Compostela – España; [email protected] [email protected] [email protected] 3 Universidad de Camagüey “Ignacio Agramonte Loynaz”, Facultad de Química, Departamento de Química, Camagüey – Cuba; [email protected] Abstract Coumarins are a group of phytochemicals with multiple applications in different fields, such as food and medicine. Many of their benefits are based on the different activities that they display, within which stand antioxidant properties. However, some conflicting evidences suggest the need to clarify or estimate the safety aspects and genotoxicity of this group of compounds. In this sense it has been shown in previous studies that some of them have presented pro-oxidant activity in vitro and clastogenic activity in silico. Therefore, in this paper chemical structures of natural coumarins that come from various natural sources were studied. This database became topological-structural information, using molecular descriptors from the TOPSMODE approach. A virtual screening was also held that used a model of structure-clastogenic activity relationship, and linear discriminant analysis (LDA) technique. The main results were interpreted in terms of safety. Introduction Nutrition, which was once intended to meet the nutrient needs, it is today directed to a research toward preventing and treating chronic diseases. -
Psoralen Photochemistry and Nucleic Acid Structure
0022-202X/ 8 1/ 770 1-00J9$02.00/ 0 THE JOURNAL OF I NV r, STIGATIVE DEIlMATOLOGY, 77:39-44, IH8 1 Vol. 77, No. I Copy righ t © 198 1 by The Williams & Wilkins Co. Printed ill U.S.A. Psoralen Photochemistry and Nucleic Acid Structure JOHN E. H EARST, PH.D. Departm.ent of Chemistry, University of California, B erkeley, California, U.S.A . Many new psorale n derivatives have b een synthesized nated in the production of many new psoralens, several of which in an effort to enhance their water solubility and their have superior photoreactivity with both DNA and RNA as binding to nucleic acids. Availability of the very soluble compared to TMP and 8-MOP. The 5 new derivatives shown strongly binding compounds has improved our abilities here are 4' adducts of TMP and their structW"es ru-e shown (3 - to follow the optical changes associated with the photo 7). T he complete characterization of methoxymethyltrioxsalen chemistry of psoralens with DNA. Changes in both ab (MMT, 4) , hydroxymethyltrioxsalen (HMT, 5) and aminome sorbance and fluoresce nce are prese nted in this r eview. thyltrioxsalen (AMT, 7) wi th respect to their reactivity with A kinetic model for the photochemistry concludes that nucleic acids, including a theoretical treatment, is described in the detailed kinetics is dominated by the equilibrium a recent paper by Isaacs et al [6]. A related set of soluble 8- constant for intercalation of the psoralen in the DNA, methoxypsoralen derivatives have been synthesized by Isaacs, the quantum yield for photoaddition to DNA once inter Chun, a nd Hearst [7] a nd ru'e listed as compounds 8-11. -
(12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 100 Ol
US 2002O102215A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 Klaveness et al. (43) Pub. Date: Aug. 1, 2002 (54) DIAGNOSTIC/THERAPEUTICAGENTS (60) Provisional application No. 60/049.264, filed on Jun. 6, 1997. Provisional application No. 60/049,265, filed (75) Inventors: Jo Klaveness, Oslo (NO); Pal on Jun. 6, 1997. Provisional application No. 60/049, Rongved, Oslo (NO); Anders Hogset, 268, filed on Jun. 7, 1997. Oslo (NO); Helge Tolleshaug, Oslo (NO); Anne Naevestad, Oslo (NO); (30) Foreign Application Priority Data Halldis Hellebust, Oslo (NO); Lars Hoff, Oslo (NO); Alan Cuthbertson, Oct. 28, 1996 (GB)......................................... 9622.366.4 Oslo (NO); Dagfinn Lovhaug, Oslo Oct. 28, 1996 (GB). ... 96223672 (NO); Magne Solbakken, Oslo (NO) Oct. 28, 1996 (GB). 9622368.0 Jan. 15, 1997 (GB). ... 97OO699.3 Correspondence Address: Apr. 24, 1997 (GB). ... 9708265.5 BACON & THOMAS, PLLC Jun. 6, 1997 (GB). ... 9711842.6 4th Floor Jun. 6, 1997 (GB)......................................... 97.11846.7 625 Slaters Lane Alexandria, VA 22314-1176 (US) Publication Classification (73) Assignee: NYCOMED IMAGING AS (51) Int. Cl." .......................... A61K 49/00; A61K 48/00 (52) U.S. Cl. ............................................. 424/9.52; 514/44 (21) Appl. No.: 09/765,614 (22) Filed: Jan. 22, 2001 (57) ABSTRACT Related U.S. Application Data Targetable diagnostic and/or therapeutically active agents, (63) Continuation of application No. 08/960,054, filed on e.g. ultrasound contrast agents, having reporters comprising Oct. 29, 1997, now patented, which is a continuation gas-filled microbubbles stabilized by monolayers of film in-part of application No. 08/958,993, filed on Oct. -
Active Moiety Name FDA Established Pharmacologic Class (EPC) Text
FDA Established Pharmacologic Class (EPC) Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: Active Moiety Name “(Drug) is a (FDA EPC Text Phrase) indicated for [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13. -
Particularly Hazardous Substances (Phs)
PARTICULARLY HAZARDOUS SUBSTANCES (PHS) This list contains examples of chemicals that may be used at the University of Nebraska Medical Center (UNMC). The list is not all-inclusive. This lists contains examples of Particularly Hazardous Substances (PHS) which are a special subset of OSHA Hazardous Chemicals. PHS include chemicals that are known or suspect carcinogens, reproductive toxins, and/or highly toxic materials. Before working with any PHS, please determine if you have any of these and evaluate if additional protective work practices are needed. You should utilize the PHS Assessment Form to help in this evaluation. Abbreviations Used in List Headings CARC NTP National Toxicology Program listed carcinogen - National Toxicology Program K = known carcinogen S = suspect carcinogen CARC IARC International Association for Research on Cancer listed carcinogen - IARC 1= known human carcinogen 2A = probable human carcinogen 2B = possible human carcinogen CARC OSHA OSHA regulated carcinogen - OSHA-regulated carcinogens X = regulated carcinogen REPRO SHEP Included in Catalog of Teratogenic Agents, T.H. Shepard, 6th Edition, Johns Hopkins Press, 1989 X = listed teratogen REPRO CALIF Listed by the State of California ‘Safe Drinking Water Act, 1986’ http://www.oehha.ca.gov/prop65/prop65_list/Newlist.html F = female reproductive hazard M = male reproductive hazard HTX Highly toxic, included in EPA’s list ‘Acutely Toxic Hazardous Waste’, P-listed waste 40 CFR 261.33, or Included in OSHA’s list of highly hazardous chemicals with a threshold £200