TMMS 9.8 with IBM Maas360 Integration

Total Page:16

File Type:pdf, Size:1020Kb

TMMS 9.8 with IBM Maas360 Integration TMMS 9.8 with IBM MaaS360 Integration November 1, 2018 Mobile Threat Landscape Copyright 2013 Trend Micro Inc. 2 Over 29 Million Malicious Android App Detected by Trend Micro as of Sep. 2018 3 Copyright 2017 Trend Micro Inc. Top Five Android Malware of 2018 (Jan. – Sep.) Name Percentage Description Mostly distributed as pornography applications. Collects privacy information including phone number, device id, sim Shedun 37.49% serials number and so on. Install backdoor on the device and for device administrator privilege. Pretend as a porn player and download other malicious Rootnik 12.41% applications. It also gains root access to devices. Without user’s awareness or authorization, accept command from remote C&C server and execute related operation. Fobus 7.18% Intercept or abort SMS. Collects and leaks users privacy information including phone number, imei, device id etc. Automatically send out SMS without user's authorization or Smssender 4.31% knowledge. Collects user’s privacy information including phone number. Sends SMS to subscribe to premium services without user’s SmsPay 2.47% consents. Collects and leaks users privacy information 4 Copyright 2017 Trend Micro Inc. including phone number and location. Unique Mobile Ransomware Detected by Trend Micro • Huge spike is caused by SLocker family. • SLocker locks screen or encrypts filesC Mobile Ransomware Types on Android Lock Screen File Encryption PIN Hijack Copyright 2013 Trend Micro Inc. 6 Mobile Ransomware Demand Payment iOS Malware Detected from Apple App Store (Jan. – Sep. 2018) Name Count Description Uploads device and app information to a malicious central XcodeGhost 18 server, creates fake iCloud password login prompts, read and write from the copy-and-paste clipboard Setup a backdoor to attackers and executes malicious iBackDoor 17 command Abuses private APIs in order to collect more personal Youmi 2 information, including a list of installel apps, serial numbers and user's Apple ID email address etc. 8 Copyright 2017 Trend Micro Inc. Introducing TMMS 9.8 Copyright 2013 Trend Micro Inc. 9 Security Powered by Cloud Based MARS Mobile App Reputation Service is a cloud- based technology that automatically identifies mobile threats based on app behaviour • Crawls & collects a huge number of Android and iOS apps from various markets • Identifies existing and brand new mobile malware • Identifies apps that may abuse privacy and device resources • App repack and vulnerability assessment 10 Copyright 2017 Trend Micro Inc. MDA (Mobile Dynamic Analyzer) MARS Core Malware Research App API Force Invoke Sourcing Crawler Emulator Smart/Heuristic Pattern SysCall Hooking UI Trigger UI Behavior Logging Auto Scoring, Manual Analysis Spoofing Data Resource Usage Estimation Battery/Memory/Network/ MSA (Mobile Static Analyzer) Log Collector/Analyzer Unpack/Decompiling/Un-Packer MARS APIs/Report/Portal Repack Scanning Sensitive API Check RESTful APIs for Query/Submission Mobile Category Privacy Data Flow Analyzer Checking Comprehensive Report 3rd SDK (Adware) App Vulnerability Scanning Scanning MARS Portal for Partners/Customers Resource Usage Estimation Battery/Memory/Network 11 Copyright 2017 Trend Micro Inc. TMMS 9.8 with Machine Learning • Mathematical models to determine probability if an app is good OR bad • Works well on unknown executable malware • Extracts file features • Models are constantly trained and learn from good & bad app data to maintain their accuracy 12 Copyright 2016 Trend Micro Inc. Why Machine Learning for Mobile Security Samples of Mobile Ransomware Look Different on the Surface Ransom-EncryptLock1 (Known sample) Ransom-EncryptLock2 (Unknown) 13 Copyright 2016 Trend Micro Inc. Machine Learning for Mobile Security Predicts Maliciousness When mobile ransomware features are looked at and compared Ransom-ScreenLock1 (Known sample) Ransom-ScreenLock2 (Unknown) Example of 2 DEX Opcode – opcode distribution normalized machine learning in graph found to have similar characteristics Important API call 14 Copyright 2016 Trend Micro Inc. AV-Comparatives Perfect Score Four Years in a Row: 2015 through 2018 TMMS 9.8 Security Features Security Features Description Android iOS • Detect malware infected apps √ √ • Real time scan of apps during installation √ Anti - Malware • Scheduled scan of apps from the management server √ √ • Manual scan of the apps from the devices √ √ App Privacy Leak Detection • Detect apps that are leaking privacy data and information √ • Identifies vulnerabilities in apps such as unauthorized access, weak App Vulnerability Detection data storage practice, poor password implementation, and poor SDK √ programming practice App Repack Detection • Detect apps that have been repacked √ √ • MITM detection √ √ Network Security • Malicious SSL certificate detection √ √ • Suspicious access point detection √ • Malicious iOS profile detection √ • Rooted or jailbroken device detection √ √ Device Vulnerability Protection • Development mode enablement detection √ • USB debugging detection √ • Prevent users from accessing malicious websites Web16 ThreatCopyright Protection 2015 Trend Micro Inc. √ • Android supports Chrome browser Integration with IBM MaaS360 • TMMS 9.8 feeds device security status to IBM MaaS360 • IBM MaaS360 now has the device security status visibility • IBM MaaS360 can now take compliance policy actions on devices with malicious apps installed Copyright 2013 Trend Micro Inc. 17 TMMS 9.8 Console for the IBM MaaS360 Integration Copyright 2013 Trend Micro Inc. 18 Add TMMS agents and configure enrollment information Copyright 2013 Trend Micro Inc. 19 Distribute TMMS agents to devices Copyright 2013 Trend Micro Inc. 20 Create three TMMS Device Groups with Custom Attributes Copyright 2013 Trend Micro Inc. 21 Admin can create device compliance policies for dangerous devices Copyright 2013 Trend Micro Inc. 22 Mobile Security Thought Leadership • Mobile Security Blogs http://blog.trendmicro.com/trendlabs-security-intelligence/category/mobile/ • Mobile Security Intelligence Articles http://www.trendmicro.com/vinfo/us/security/threat-intelligence-center/mobile-safety/ 23 Copyright 2015 Trend Micro Inc. .
Recommended publications
  • AV-TEST Security Report for 2016/2017
    FACTS AND FIGURES SECURITY REPORT The AV-TEST Security Report 2 WINDOWS Security Status 5 macOS Security Status 10 ANDROID Security Status 13 INTERNET THREATS Security Status 16 IoT Security Status 19 2016/17 Test Statistics 22 FACTS AND FIGURES Declining malware statistics It remains positive to note that the declining malware trend in 2016 The AV-TEST provided some relief, at least quantitatively. Thus, compared to 2015, detection systems were required to seek out and defend against 14% fewer Security Report malware samples. In total, this amounted to precisely 11,725,292 fewer newly developed malware programs than in the previous year. It should not be The best news right off the bat: forgotten, however, that the volume of newly developed malware in 2016 still represented the second-highest since the beginning of measurements by Compared to the previous year, the AV-TEST systems. In addition, 2015 saw skyrocketing growth in malware the detection systems of AV-TEST showed programs and in comparison to 2014, practically a doubling of the sample statistics. The overall number of malware programs for all operating systems a slight decline in the development currently exceeds 640 million. of malware programs for the year 2016. Without wanting to belittle the positive trend for 2016, the fact remains that Overall, that is a pleasing trend, however there have been several short-term downward trends since the beginning of by no means any reason to celebrate, measurements in 1984, a total of six times, without seriously influencing the clear, long-term trend – towards more malware. Despite declining numbers, as evidenced by the AV-TEST Institute‘s in 2016, the AV-TEST analysis systems still recorded an average of 350,000 statistics of this year‘s Security Report.
    [Show full text]
  • Global 2000 Bank Secures 9,000 Android Smartphones to Fulfill Internal Compliance Requirements
    CASE STUDY Global 2000 bank secures 9,000 Android smartphones to fulfill internal compliance requirements Customer Profile This financial services firm is based in the middle east, has an international network of 1400 branches globally, and is a member of the Forbes Global 2000 list. Industry: Financial services Mobility Policy: COPE EMM Solution: VMware AirWatch The Solution The Challenge • Lookout Mobile Endpoint Security To enable their Corporate Owned, Personally Enabled (COPE) mobility policy, The Results this leading bank needed a mobile security solution that would comply with their • Achieved compliance with internal internal policy for data protection, integrate with VMware AirWatch, and provide policies for endpoint protection visibility into mobile threats encountered by their international workforce. • Gained visibility into high-risk The IT team decided to implement a COPE mobility policy in order to reduce threats support time by having a limited number of device models and Android versions • Improved employee productivity to maintain. In addition, the bank has developed their own enterprise application with no increase in support tickets that enables their employees to deliver banking services to customers via mobile devices. With no visibility into threats or data leakage on mobile devices, the IT mobility team knew that their unprotected mobile endpoints were an attack surface that presented a major security risk. 1 CASE STUDY The Results Lookout delivers a solution that collects The bank is very happy with how quickly they were able to “ deploy Lookout, including pushing the Lookout For Work app threat data from around the world, and out to 2,000 devices a day towards the end of the process.
    [Show full text]
  • VOL.80 August, 2016 ASEC REPORT VOL.80 August, 2016
    Security Trend ASEC REPORT VOL.80 August, 2016 ASEC REPORT VOL.80 August, 2016 ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www. ahnlab.com). SECURITY TREND OF August 2016 Table of Contents 1 01 Malware Statistics 4 02 Web Security Statistics 6 SECURITY STATISTICS 03 Mobile Malware Statistics 7 Ransomware Disguised as PokemonGo to Catch 10 2 Users SECURITY ISSUE Locky Ransomware Disguised as .DLL File 13 3 Appears IN-DEPTH ANALYSIS ASEC REPORT 80 | Security Trend 2 1 SECURITY STATISTICS 01 Malware Statistics 02 Web Security Statistics 03 Mobile Malware Statistics ASEC REPORT 80 | Security Trend SECURITY STATISTICS 01 Malware Statistics According to the ASEC (AhnLab Security Emergency Response Center), 8,793,413 malware were detected in August 2016. The number of detected malware decreased by 955,541 from 9,748,954 detected in the previous month as shown in Figure 1-1. A total of 4,986,496 malware samples were collected in August. 11,000,000 10,000,000 10,467,643 9,748,954 9,000,000 8,793,413 8,000,000 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 Detected Samples 3,022,206 6,121,096 4,986,496 Collected Samples June July August [Figure 1-1] Malware Trend * “Detected Samples” refers to the number of malware detected by AhnLab products deployed by our customers.
    [Show full text]
  • Android Malware Category and Family Detection and Identification Using Machine Learning
    Android Malware Category and Family Detection and Identification using Machine Learning Ahmed Hashem El Fiky1*, Ayman El Shenawy1, 2, Mohamed Ashraf Madkour1 1 Systems and Computer Engineering Dept., Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 1 Systems and Computer Engineering Dept., Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 2 Software Engineering and Information Technology, Faculty of Engineering and Technology, Egyptian Chinese University, Cairo, Egypt. [email protected] [email protected] [email protected] Abstract: Android malware is one of the most dangerous threats on the internet, and it's been on the rise for several years. Despite significant efforts in detecting and classifying android malware from innocuous android applications, there is still a long way to go. As a result, there is a need to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Each Android malware family and category has a distinct objective. As a result, it has impacted every corporate area, including healthcare, banking, transportation, government, and e-commerce. In this paper, we presented two machine- learning approaches for Dynamic Analysis of Android Malware: one for detecting and identifying Android Malware Categories and the other for detecting and identifying Android Malware Families, which was accomplished by analyzing a massive malware dataset with 14 prominent malware categories and 180 prominent malware families of CCCS-CIC- AndMal2020 dataset on Dynamic Layers. Our approach achieves in Android Malware Category detection more than 96 % accurate and achieves in Android Malware Family detection more than 99% accurate. Our approach provides a method for high-accuracy Dynamic Analysis of Android Malware while also shortening the time required to analyze smartphone malware.
    [Show full text]
  • Mobile Threat
    Mobile threat February 2018 David Bird FBCS considers threats via mobile devices and explains why he thinks the future may not be so bright. The unprecedented WannaCry ransomware and subsequent Petya destruct-ware outbreaks have caused mayhem internationally. As a result of a remote execution vulnerability, malware has propagated laterally due to two basic root-causes: (a) out-dated operating systems (OS), and/or (b) in-effective patching regimes. Here we have a commonality with the mobile device domain. There are many older generation devices that have different legacy mobile OSes installed that are no longer supported or updated. Legacy connected Microsoft Pocket PC palmtops and Windows CE or Windows Mobile devices are examples of tech still being used by delivery firms and supermarkets; even though they have been end-of-extended support since 2008 and 2014 respectively. So, do we have a problem? With over two and a half billion smartphones globally in 2016, the market is anticipated to reach at least six billion by 2020 due to the convenience of mobile back-end-as-a-service. Apparently, one vulnerability is disclosed every day, in which 10 per cent of those are critical. This figure does not include the number of internet-enabled tablets that are in circulation; in 2015, there were one billion globally, and this is expected to rise to almost one and a half billion by 2018. Today both Android-centric manufacturers and Apple fight for dominance in the mobile device market - squeezing out Blackberry’s enterprise smartphone monopoly. This has resulted in unsupported Blackberry smart-devices persisting in circulation, closely followed by successive versions of Windows Phone OS - with only 10 left supported.
    [Show full text]
  • New Developments in Trojan Virus Engineering Author: Mengze Li ▪ Advisor: Sonja Streuber
    The Wars in Your Machine: New Developments in Trojan Virus Engineering Author: Mengze Li ▪ Advisor: Sonja StreuBer INTRODUCTION THREE NEW TROJANS Definition: Shedun: Android Trojan Cockroach Trojan Polymorphic JavaScript Trojan The Trojan Virus is a malicious computer program that is used to • Runs on Android mobile devices; has been seen pre- • Steals the sensitive data, such as user name, • Spread as email attachments compromise a computer by fooling users about its real intent. installed on cellphones and tablets from China. password, time, date, email, and every key stroke • In different emails, the cipher, string literals • Downloads and installs adware; launches popup and emails the data back to the host. and variable names are different which • Unlike computer viruses, or worms, the Trojan does not directly advertisements • Spread among Windows PCs through USB drives. makes itself less detectable. attack operating systems • Roughly 20,000 popular Android applications • Very hard to detect with anti-virus software. • Meant to be run from disk, which gives it • Modern forms act as a backdoor to grant access without infected (Twitter, Facebook, Snapchat, etc.) permissions to attack system globally. authorization. Analysis • Help attackers to break the confidentiality, integrity and Analysis Analysis availability of data • Can cause a huge impact to both, private users and public organizations, such as exposing the user’s credit card information, or other personal identity information (PII). Method: • Variable names and string literals encoded. • In this study, we are reviewing and analyzing the actual code of three famous modern Trojans in order to learn their most • Transmit target email with Transmit.exe file.
    [Show full text]
  • VOL.78 June, 2016 ASEC REPORT VOL.78 June, 2016
    Security Trend ASEC REPORT VOL.78 June, 2016 ASEC REPORT VOL.78 June, 2016 ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www. ahnlab.com). SECURITY TREND OF June 2016 Table of Contents 1 01 Malware Statistics 4 02 Web Security Statistics 6 SECURITY STATISTICS 03 Mobile Malware Statistics 7 2 Cross-platform Adware Appears 10 SECURITY ISSUE 3 Ransomware Using "Malvertising" Plague Users 13 IN-DEPTH ANALYSIS ASEC REPORT 78 | Security Trend 2 1 SECURITY STATISTICS 01 Malware Statistics 02 Web Security Statistics 03 Mobile Malware Statistics ASEC REPORT 78 | Security Trend SECURITY STATISTICS 01 Malware Statistics According to the ASEC (AhnLab Security Emergency Response Center), 10,467,643 malware were detected in June 2016. The number of detected malware decreased by 1,661,954 from 12,129,597 detected in the previous month as shown in Figure 1-1. A total of 3,022,206 malware samples were collected in June. 40,000,000 30,000,000 20,000,000 12,129,597 11,564,967 10,467,643 10,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 Detected Samples 3,245,837 2,957,212 3,022,206 Collected Samples April May June [Figure 1-1] Malware Trend * “Detected Samples” refers to the number of malware detected by AhnLab products deployed by our customers.
    [Show full text]
  • Cyber Security Newsletter
    Monthly Newsletter July 2016 Mobile Devices and Malware In This Issue Introduction The past few years have seen a tremendous increase Introduction in the use of mobile devices. This is partly due to devices becoming more affordable, but the real What is Malware? reason is convenience. Mobile devices have Are Mobile Devices increased in speed, power and storage space, making them more convenient than carrying around a Vulnerable? laptop. This has led to a rise in people using them Dangers to for online shopping, managing their finances, paying Businesses their bills, etc. While this is convenient for users, it also exposes them, and potentially where they work, How to protect to multiple threats. yourself Mobile devices have become so numerous that in the latter half of 2013 there were more mobile devices accessing the internet than traditional computers. Today it is almost impossible to find someone who doesn’t have a smartphone. And several people have iPhone Malware tablets, smart watches, and/or more than one smart phone. Because of this, mobile iPhone virus devices have become a target for cybercriminals and malware. Wirelurker Apple Malware What is Malware? As you may remember from May’s newsletter, malware is a compound word derived from combining Malicious and Software. Basically it is a program that has been written to Android Malware perform a malicious act. Examples of malware are viruses, worms, adware, ransomware, Stagefright etc. So why does malware work on one computer and not another? The answer to that is because the malware has to be written to work on a specific operating system or computer Fake Apps hardware.
    [Show full text]
  • AV Test Security Report 2017/2018
    FACTS AND FIGURES SECURITY REPORT The AV-TEST Security Report 2 Security Status WINDOWS 6 Breakthrough of CRYPTO MINERS 11 Security Status macOS 14 Security Status ANDROID 16 Security Status INTERNET THREATS 20 Security Status IoT 23 2017/18 Test Statistics 26 FACTS AND FIGURES Malware development on a high level The AV-TEST For the year 2016, the detection systems registered declining numbers for newly developed malware, and the AV-TEST Institute predicted this trend also Security Report for the subsequent year. And it proved correct, as documented by the 2017 statistics: Last year as well, the number of newly developed malware samples remained below the numbers of the previous year – at least in the first three The number of newly developed malware quarters. In total, this decline is indeed quantifiable, but does not represent a programs remains at a consistently high level. significant change. Whereas in the year 2016, at total of 127,473,381 new malware samples were discovered, in 2017 the total still reached 121,661,167. But the stagnation registered since 2016 is The speed at which new malware is developed, and to which security systems deceiving, as it only allows for quantitative have to respond, thus declined slightly from 4.0 to 3.9 malware programs per second. statements concerning the risk status. Statements as to the dangerousness of malware Trend: malware development has doubled in circulation, as well as the damage inflicted, Since 2017, this development, however, has experienced a dramatic swing in are not reflected in these measured values. It is the opposite direction: Since October of last year, the detection systems of here, however, where the prospects are not as the AV-TEST Institute have registered practically a doubling of the monthly rates of new malware development.
    [Show full text]
  • JITANA: a Modern Hybrid Program Analysis Framework for Android Platforms
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering, Department CSE Journal Articles of 2019 JITANA: A modern hybrid program analysis framework for android platforms Yutaka Tsutano Shakthi Bachala Witawas Srisa-an Gregg Rothermel Jackson Dinh Follow this and additional works at: https://digitalcommons.unl.edu/csearticles Part of the Computer and Systems Architecture Commons, and the Systems and Communications Commons This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu JITANA: A modern hybrid program analysis framework for Android platforms Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an, Gregg Rothermel, Jackson Dinh Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA Corresponding author — Witawas Srisa-an, email [email protected] Email addresses — [email protected] (Y. Tsutano), [email protected] (S. Bachala), [email protected] (G. Rothermel), [email protected] (J. Dinh). Abstract Security vetting of Android apps is often performed under tight time constraints (e.g., a few minutes). As such, vetting activities must be performed “at speed”, when an app is submitted for distribution or a device is analyzed for malware. Existing static and dynamic program analysis approaches are not feasible for use in secu- rity analysis tools because they require a much longer time to operate than secu- rity analysts can afford. There are two factors that limit the performance and effi- ciency of current analysis approaches.
    [Show full text]
  • REPORT VOL.85 January, 2017 ASEC REPORT VOL.85 January, 2017
    Security Trend ASEC REPORT VOL.85 January, 2017 ASEC REPORT VOL.85 January, 2017 ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www. ahnlab.com). SECURITY TREND OF January 2017 Table of Contents 1 01 Malware Statistics 4 02 Web Security Statistics 6 SECURITY STATISTICS 03 Mobile Malware Statistics 7 2 A New Type Of Ransomware Launching DDoS Attack 10 SECURITY ISSUE 3 Evolving Ransomware Attack Patterns 13 IN-DEPTH ANALYSIS ASEC REPORT 85 | Security Trend 2 1 SECURITY STATISTICS 01 Malware Statistics 02 Web Security Statistics 03 Mobile Malware Statistics ASEC REPORT 85 | Security Trend SECURITY STATISTICS 01 Malware Statistics According to the ASEC (AhnLab Security Emergency Response Center), 5,993,659 malware were detected in January 2017. The number of detected malware decreased by 944,375 from 6,938,034 detected in the previous month as shown in Figure 1-1. A total of 4,962,372 malware samples were collected in January. 11,000,000 10,000,000 9,000,000 8,651,224 8,000,000 6,938,034 7,000,000 5,993,659 6,000,000 5,000,000 4,590,540 4,692,745 4,962,372 4,000,000 3,000,000 2,000,000 1,000,000 Detected Samples Collected Samples 0 November December January [Figure 1-1] Malware Trend * “Detected Samples” refers to the number of malware detected by AhnLab products deployed by our customers.
    [Show full text]
  • ASEC REPORT VOL.83 November, 2016 ASEC REPORT VOL.83 November, 2016
    Security Trend ASEC REPORT VOL.83 November, 2016 ASEC REPORT VOL.83 November, 2016 ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www. ahnlab.com). SECURITY TREND OF November 2016 Table of Contents 1 01 Malware Statistics 4 02 Web Security Statistics 6 SECURITY STATISTICS 03 Mobile Malware Statistics 7 Warning: Malware May Be After Your Facebook 10 2 Account! SECURITY ISSUE Malware Exploiting Ms Word User Forms 13 3 Continues To Spread IN-DEPTH ANALYSIS ASEC REPORT 83 | Security Trend 2 1 SECURITY STATISTICS 01 Malware Statistics 02 Web Security Statistics 03 Mobile Malware Statistics ASEC REPORT 83 | Security Trend SECURITY STATISTICS 01 Malware Statistics According to the ASEC (AhnLab Security Emergency Response Center), 8,651,224 malware were detected in November 2016. The number of detected malware decreased by 1,048,894 from 9,700,118 detected in the previous month as shown in Figure 1-1. A total of 4,590,540 malware samples were collected in November. 20,000,000 10,000,000 9,700,118 9,000,000 8,999,000 8,651,224 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 Detected Samples 5,067,805 4,348,813 4,590,540 Collected Samples September October November [Figure 1-1] Malware Trend * “Detected Samples” refers to the number of malware detected by AhnLab products deployed by our customers.
    [Show full text]