Transcriptomic Response in Symptomless Roots of Clubroot Infected 2 Kohlrabi (Brassica Oleracea Var

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptomic Response in Symptomless Roots of Clubroot Infected 2 Kohlrabi (Brassica Oleracea Var bioRxiv preprint doi: https://doi.org/10.1101/391516; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Transcriptomic response in symptomless roots of clubroot infected 2 kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants 3 4 Stefan Ciaghi1,$, Arne Schwelm1,2,$, Sigrid Neuhauser1,* 5 6 1 University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 7 Innsbruck, Austria 8 2 Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala 9 BioCenter, Linnean Centre for Plant Biology, P.O. Box 7080, SE-75007 Uppsala, 10 Sweden 11 12 * Correspondence: [email protected] 13 $ Contributed equally to this work 14 15 Abstract 16 Background: Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, 17 Rhizaria) is one of the economically most important diseases of Brassica crops. The 18 formation of hypertrophied roots accompanied by altered metabolism and hormone 19 homeostasis is typical for infected plants. Not all roots of infected plants show the same 20 phenotypic changes. While some roots remain uninfected, others develop galls of 21 diverse size. The aim of this study was to analyse and compare the intra-plant 22 heterogeneity of P. brassicae root galls and symptomless roots of the same host plants 23 (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using 24 transcriptome analyses. 25 Results: Transcriptomes were markedly different between symptomless roots and gall 26 tissue. Symptomless roots showed transcriptomic traits previously described for 27 resistant plants. Genes involved in host cell wall synthesis and reinforcement were up- 28 regulated in symptomless roots indicating elevated tolerance against P. brassicae. By 29 contrast, genes involved in cell wall degradation and modification processes like 30 expansion were up-regulated in root galls. Hormone metabolism differed between 31 symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root 32 galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. 33 Cytokinin metabolism and signalling were up-regulated in symptomless roots with the 34 exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid 35 (SA) mediated defence response was up-regulated in symptomless roots, compared 36 with root gall tissue. This is probably caused by a secreted benzoic acid salicylic acid 37 methyl transferase from the pathogen (PbBSMT), which was one of the highest 38 expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially 39 leads to increased pathogen tolerance in uninfected roots. 40 Conclusions: Infected and uninfected roots of clubroot infected plants showed 41 transcriptomic differences similar to those previously described between clubroot 42 resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, 43 that for a better understanding of clubroot disease targeted, spatial analyses of clubroot 44 infected plants will be vital in understanding this economically important disease. 45 46 Keywords: Clubroot, Host-pathogen interaction, Plasmodiophora brassicae, Brassica 47 oleracea, root transcriptome, protist 48 1 bioRxiv preprint doi: https://doi.org/10.1101/391516; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 49 List of abbreviations 50 ABA: Abscisic acid; BG: Brown spindle gall; BR: Brassinosteroids; C: Control; CDS: 51 Coding sequence; CK: Cytokinin; COG: Clusters of Orthologous Groups; DEG: 52 Differentially expressed gene; dpi: days post inoculation; ET: Ethylene; FDR: False 53 discovery rate; FPKM: Fragments per kilobase per million; HR: hypersensitive 54 response; IsoPct: Isoform percentage; JA: Jasmonic acid; MeSA: Methyl-salicylate; 55 NCBI: National Center for Biotechnology Information; ORF: Open reading frame; 56 PbraAT: Austrian P. brassicae field population; PR: Pathogenesis related; RNA: 57 Ribonucleic acid; SA: Salicylic acid; SAM: S-adenosylmethionine; SL: Symptomless 58 root; TAIR: The Arabidopsis Information Resource; WG: White spindle gall. 59 60 61 Background 62 Clubroot disease is one of the most important diseases of Brassica crops worldwide 63 accounting for approximately 10% loss in Brassica vegetable, fodder, and oilseed crops 64 (Dixon, 2009). Clubroot is caused by Plasmodiophora brassicae, an obligate biotrophic 65 protist, taxonomically belonging to Phytomyxea within the eukaryotic super-group 66 Rhizaria (Bulman and Braselton, 2014; Neuhauser et al., 2014). This soil borne 67 pathogen has a complex life cycle: zoospores infect root hairs where primary plasmodia 68 form. These plasmodia develop into secondary zoospores, which are released into the 69 soil and re-infect the root cortex where secondary plasmodia develop (Kageyama and 70 Asano, 2009). The secondary plasmodia mature into resting spores, which are released 71 into the soil. In infected host tissue division and elongation of cells is triggered upon 72 infection, which leads to hypertrophies of infected roots resulting in the typical root 73 galls or clubroots (Fig. 1). 74 75 76 Figure 1: Sampling site and plant material. a: Field where plants were sampled 77 (Ranggen, Tyrol; Austria). b: Normally developed kohlrabi plant. Roots were analysed 78 as negative control (C). c: Clubroot infected kohlrabi plants with three different root 2 bioRxiv preprint doi: https://doi.org/10.1101/391516; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 79 phenotypes: symptomless roots (SL), white spindle galls (WG), and brownish spindle 80 galls (BG). Scale bar: 1 cm. 81 82 P. brassicae can only be grown and studied in co-culture with its host. This has 83 hampered both, targeted and large scale studies on the molecular basis of P. brassicae 84 and the interactions with its host (Schwelm et al., 2018). Because of the economic 85 importance of clubroot disease, numerous studies analysed specific aspects of the 86 biology, physiology and molecular biology of the plant-pathogen interaction to better 87 understand and control the disease. The first of these experimental studies were based 88 on the Arabidopsis/Plasmodiophora pathosystem (e.g. Devos et al., 2006; Siemens et 89 al., 2006). During the last years an increasing number of Brassica (host) genomes 90 became available (Wang et al., 2011; Chalhoub et al., 2014; Liu et al., 2014; Cheng et 91 al., 2016), as did several P. brassicae genomes (Schwelm et al., 2015; Bi et al., 2016b; 92 Rolfe et al., 2016; Daval et al., 2018) permitting new research approaches, including 93 targeted transcriptome studies. There are analyses of (plant) transcriptomes of roots of 94 clubroot infected plants compared with uninfected plants (Agarwal et al., 2011; Bi et 95 al., 2016a; Malinowski et al., 2016; Zhao et al., 2017), of host varieties susceptible and 96 tolerant to clubroot (Jubault et al., 2008; Bi et al., 2016a), or the host response to 97 different P. brassicae isolates (Siemens et al., 2006; Agarwal et al., 2011; Lovelock et 98 al., 2013; Zhang et al., 2016). 99 100 Plants infected with P. brassicae show marked physiological changes including cell 101 wall biosynthesis, plant hormone metabolism and plant defence related processes. 102 Expansin genes, involved in plant cell expansion and elongation (Cosgrove, 2005), 103 were up-regulated in P. brassicae infected roots (Siemens et al., 2006; Agarwal et al., 104 2011; Irani et al., 2018). In P. brassicae infected roots enzymatic activity of 105 Xyloglucan endo Transglucosylase/Hydrolases (XTHs) increases (Devos et al., 2005), 106 while an early response to P. brassicae infection was up-regulation of the 107 phenylpropanoid pathway that provides lignin precursors (Zhao et al., 2017). With 108 progression of clubroot development, the lignification of clubroot tissue was reduced 109 (Deora et al., 2013) and genes involved in lignification processes were down-regulated 110 (Cao et al., 2008). On the other hand cell wall thickening and lignification was 111 suggested to limit the spread of the pathogen in tolerant B. oleracea (Donald et al., 112 2008) and B. rapa (Takahashi et al., 2001). 113 114 The development of clubroot symptoms is accompanied by changes of plant hormone 115 homeostasis (Siemens et al., 2006; Ludwig-Müller et al., 2009; Malinowski et al., 116 2016). During clubroot development, auxins mediate host cell divisions and elongation. 117 Auxins increase over time during clubroot development and accumulate in P. brassicae 118 infected tissues in a sink like manner (Ludwig-Müller et al., 2009). In addition, genes 119 belonging to the auxin conjugating GH3 protein family are regulated differentially 120 during clubroot development (Jahn et al., 2013) with one GH3 protein gene (PbGH3; 121 CEP01995.1) identified in the P. brassicae genome (Schwelm et al., 2015). Cytokinins 122 (CKs) increase initially, but decrease again with the onset of gall formation
Recommended publications
  • Rare Phytomyxid Infection on the Alien Seagrass Halophila Stipulacea In
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14053 Rare phytomyxid infection on the alien seagrass Halophila stipulacea in the southeast Aegean Sea MARTIN VOHNÍK1,2, ONDŘEJ BOROVEC1,2, ELIF ÖZGÜR ÖZBEK3 and EMINE ŞÜKRAN OKUDAN ASLAN4 1 Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, 25243 Czech Republic 2 Department of Plant Experimental Biology, Faculty of Science, Charles University, Prague, 12844 Czech Republic 3 Marine Biology Museum, Antalya Metropolitan Municipality, Antalya, Turkey 4 Department of Marine Biology, Faculty of Fisheries, Akdeniz University, Antalya, Turkey Corresponding author: [email protected] Handling Editor: Athanasios Athanasiadis Received: 31 May 2017; Accepted: 9 October 2017; Published on line: 8 December 2017 Abstract Phytomyxids (Phytomyxea) are obligate endosymbionts of many organisms such as algae, diatoms, oomycetes and higher plants including seagrasses. Despite their supposed significant roles in the marine ecosystem, our knowledge of their marine diversity and distribution as well as their life cycles is rather limited. Here we describe the anatomy and morphology of several developmental stages of a phytomyxid symbiosis recently discovered on the petioles of the alien seagrass Halophila stipulacea at a locality in the southeast Aegean Sea. Its earliest stage appeared as whitish spots already on the youngest leaves at the apex of the newly formed rhizomes. The infected host cells grew in volume being filled with plasmodia which resulted in the formation of characteristic macroscopic galls.
    [Show full text]
  • Chemical Control of Clubroot Disease of Brussels
    Chemical Control of Clubroot results from cooperative work between California Exten chemicals applied in setting water Clubroot, a soil-borne fungus disease, threatena industry. Control was achieved on 250 acres in ! grated three-phase research program carried ou controlled soil-borne fungus disease This research program and the results obtai Station and Extension Service of combining fo W. C. Snyder, 1. D. Leach, and R. H. Sciaroni instance, members of the University of Calif0 thology, Agricultural Engineering, and Vegetabl San Mateo County producers of cab- There is concern among Brussels co-ordinated effort toward development of an e bage, broccoli, and Brussels sprouts sprout growers in the central coastal ment, and adaptation of equipment to apply ch have incurred large financial losses-in counties of Santa Cruz, southern San sistant strain of seed. the past several years-because of the Mateo, Monterey, and San Luis Obispo, Paul F. Shaq clubroot disease of crucifer plants. because of the ease with which the dis- 1. Earl Coke, The clubroot disease caused by the ease is spread. soil-borne fungus - Plasmodiophora The clubroot fungus can persist in brassicae-has not been found in Cali- the soil for many years as resting spores. fornia, outside of San Francisco and San During favorable periods of tempera- resistance to cl u broot Mateo counties. ture, moisture, and soil conditions, the However, clubroot disease has been resting spore germinates and produces of breeding project ir known in Europe for more than a cen- a motile swarm spore. These motile tury and in the United States for many spores invade a plant through root hairs, years, where it is a major problem in young roots, or wounded tissue.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Testing the Effect of in Planta RNA Silencing on Plasmodiophorabrassicae Infection
    Testing the effect of in planta RNA silencing on Plasmodiophorabrassicae infection A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University S. R. Bulman 2006 ii Contents Abstract. ...................................................................................................., ................ v Acknowledgements .................................................................................................. vii List of Tables ........................................................................................................... viii List of Figures ........................................................................................................... ix CHAPTER 1. Literature Review ................................................................................ 1 Plasmodiophora brassicae ............................................................................................. 1 RNA silencing .................................................................................................................. 5 Plant defence by RNA silencing .................................................................................... 8 RNA silencing versus P. brassicae ............................................................................. 10 Molecular biology of P. brassicae ................................................................................ 10 Choice of cDNA cloning strategy in P. brassicae ......................................................
    [Show full text]
  • Plasmodiophora Brassicae
    Bi et al. Phytopathology Research (2019) 1:12 https://doi.org/10.1186/s42483-019-0018-6 Phytopathology Research RESEARCH Open Access Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways Kai Bi1,2, Tao Chen2, Zhangchao He1,2, Zhixiao Gao1,2, Ying Zhao1,2, Huiquan Liu3, Yanping Fu2, Jiatao Xie1,2, Jiasen Cheng1,2 and Daohong Jiang1,2* Abstract Plasmodiophora brassicae is an important biotrophic eukaryotic plant pathogen and a member of the rhizarian protists. This biotrophic pathogen causes clubroot in cruciferous plants via novel intracellular mechanisms that are markedly different from those of other biotrophic organisms. To date, genomes from six single spore isolates of P. brassicae have been sequenced. An accurate description of the evolutionary status of this biotrophic protist, however, remains lacking. Here, we determined the draft genome of the P. brassicae ZJ-1 strain. A total of 10,951 protein-coding genes were identified from a 24.1 Mb genome sequence. We applied a comparative genomics approach to prove the Rhizaria supergroup is an independent branch in the eukaryotic evolutionary tree. We also found that the GPCR signaling pathway, the versatile signal transduction to multiple intracellular signaling cascades in response to extracellular signals in eukaryotes, is significantly enriched in P. brassicae-expanded and P. brassicae-specific gene sets. Additionally, treatment with a GPCR inhibitor relieved the symptoms of clubroot and significantly suppressed the development of plasmodia. Our findings suggest that GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae.
    [Show full text]
  • Greenhouse Evaluation of Clubroot Resistant-Brassica Napus Cv
    pathogens Article Greenhouse Evaluation of Clubroot Resistant-Brassica napus cv. Mendel and Its Efficacy Concerning Virulence and Soil Inoculum Levels of Plasmodiophora brassicae Nazanin Zamani-Noor 1,* , Imke Krohne 2 and Birger Koopmann 2 1 Julius Kühn-Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104 Braunschweig, Germany 2 Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg August University, Grisebachstr. 6, 37077 Göttingen, Germany; [email protected] (I.K.); [email protected] (B.K.) * Correspondence: [email protected]; Tel.: +49-531-299-4530 Abstract: Clubroot resistance of oilseed rape (OSR) cultivars frequently relies on a major resistance gene originating from cv. Mendel. The efficacy of this resistance was studied in greenhouse exper- iments using two Plasmodiophora brassicae isolates, which were either virulent (P1(+)) or avirulent (P1) on Mendel. Seeds of clubroot-susceptible cultivar Visby and clubroot-resistant cultivar Mendel were sown in soil mixtures inoculated with different concentrations of resting spores (101, 103, 105, and 107 resting spores/g soil). Clubroot severity, plant height, shoot and root weight as well as resting spore propagation were assessed for each isolate and cultivar separately at four dates after sowing. The OSR cultivars behaved significantly different in the measured parameters. The thresh- old of inoculum density to cause disease depended strongly on the virulence of the pathogen and Citation: Zamani-Noor, N.; Krohne, susceptibility of the host plant. In Visby grown in soil infested with P1, clubroot symptoms and I.; Koopmann, B. Greenhouse increases in root weight and the number of propagated resting spores occurred at inoculum levels Evaluation of Clubroot of 101 resting spores and higher, whereas Mendel was not affected in soils under the three lowest Resistant-Brassica napus cv.
    [Show full text]
  • Studies of Pathogenicity in Plasmodiophora Brassicae and Segregation of Clubroot Resistance Genes from Brassica Rapa Subsp
    Studies of pathogenicity in Plasmodiophora brassicae and segregation of clubroot resistance genes from Brassica rapa subsp. rapifera by Junye Jiang A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Department of Agricultural, Food and Nutritional Science University of Alberta © Junye Jiang, 2020 Abstract The planting of clubroot resistant (CR) canola (Brassica napus) is the most effective method to manage clubroot, a soilborne disease caused by Plasmodiophora brassicae. In recent years, many P. brassicae isolates capable of overcoming resistance have been detected, often in mixtures with avirulent isolates. To improve understanding of the effect of low concentrations of virulent isolates on host resistance, three CR canola cultivars (‘45H29’, ‘L135C’ and ‘L241C’) were inoculated with pairs of isolates representing virulent/avirulent pathotypes (2*/2, 3*/3 and 5*/5) of P. brassicae, collected after or before the introduction of CR canola, respectively. Clubroot severity was significantly higher in all nine experimental treatments (low virulent + high avirulent) than in the negative control NC1 (high avirulent), and higher in seven of nine experimental treatments than in the negative control NC2 (low virulent). Disease severity was positively correlated with P. brassicae biomass in planta, as determined by quantitative PCR analysis 28 - 35 days after inoculation (dai). These results suggest that low concentrations of virulent isolates compromised the clubroot resistance in canola, facilitating infection by avirulent isolates. In a second study, the expression of 205 P. brassicae genes encoding putative secreted proteins was compared following inoculation of the canola ‘45H29’ with pathotypes 5I (avirulent) and 5X (virulent) of the pathogen.
    [Show full text]
  • Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
    Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Clubroot of Cabbage: Plasmodiophora Brassicae Introduction Slightly Infected Plants May Show Few Symptoms
    Plant Disease Diagnostic Clinic Plant Pathology and Plant‐Microbe Biology Section 334 Plant Science Building Ithaca, NY 14853‐5904 Clubroot of Cabbage: Plasmodiophora brassicae Introduction Slightly infected plants may show few symptoms above ground other than slow growth and will have Clubroot is a very serious disease of cabbage and very small knots on roots. Young infected plants may closely related crops. The most susceptible crops not show severe enough symptoms to be detected. include cabbage, Chinese cabbage, Brussels sprouts and some cultivars of turnip. Other related crops that may also be attacked include kohlrabi, kale, cauliflower, collards, broccoli, rutabaga, sea kale, all turnips, and radishes. Weeds in the mustard family may be infected and result in enhanced disease problems on the susceptible crops. Figure 2: Close-up of the club shaped roots. Figure 1: Clubroot symptom on cabbage. Disease Cycle Symptoms and Signs Clubroot is caused by the fungus Plasmodiophora The symptoms first noticed will be a decline of the brassicae. The important features of its life history plant including yellowing of leaves, and a tendency include its longevity in soil, means of spread, and its to wilt during hot days. Examination of the roots will reaction to soil pH. After the disease has occurred, reveal swollen, club-shaped roots instead of the the fungus can survive from seven to ten years normal fine network of roots (Fig. 1). In severe cases without any susceptible plant ever being grown there. most roots will be affected Fig.( 2). The swollen If any susceptible crops or weeds grow during this roots will begin to decay and eventually disintegrate.
    [Show full text]
  • Long Metabarcoding of the Eukaryotic Rdna Operon to Phylogenetically and Taxonomically Resolve Environmental Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/627828; this version posted May 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Long metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity Mahwash Jamy1, Rachel Foster2, Pierre Barbera3, Lucas Czech3, Alexey Kozlov3, Alexandros Stamatakis3,4, David Bass2,5*, Fabien Burki1,* 1Science for Life Laboratory, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Department of Life Sciences, Natural History Museum, London, UK 3Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany 4Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany 5Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, UK Corresponding authors: [email protected] [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/627828; this version posted May 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract High-throughput environmental DNA metabarcoding has revolutionized the analysis of microbial diversity, but this approach is generally restricted to amplicon sizes below 500 base pairs. These short regions contain limited phylogenetic signal, which makes it impractical to use environmental DNA in full phylogenetic inferences. However, new long-read sequencing technologies such as the Pacific Biosciences platform may provide sufficiently large sequence lengths to overcome the poor phylogenetic resolution of short amplicons.
    [Show full text]