AN AXIOMATIC APPROACH to DISTANCES BETWEEN CERTAIN DISCRETE STRUCTURES T. Margush a Dissertation Submitted to the Graduate Colle

Total Page:16

File Type:pdf, Size:1020Kb

AN AXIOMATIC APPROACH to DISTANCES BETWEEN CERTAIN DISCRETE STRUCTURES T. Margush a Dissertation Submitted to the Graduate Colle AN AXIOMATIC APPROACH TO DISTANCES BETWEEN CERTAIN DISCRETE STRUCTURES T. Margush A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 1980 il ABSTRACT The need for a quantitative tool to measure distances between various kinds of discrete structures is apparent from the literature. Distance concepts can also be used to judge the "goodness" of a candidate for the consensus of a collection of structures. Several axiomatic characterizations of distance functions on collections of binary relations and sets of subsets are presented. Applications to tree structures, preference relations, hierarchical classifications, cladistic characters, and partitions and other structures resulting from non-hierarchical classification techniques are discussed. The median of a collection, with respect to an appropriate distance function, is proposed as a candidate for consensus and methods for determining the median in the various contexts are presented. Ill ACKNOWLEDGMENT I would like to express my appreciation to Dr. F. R. McMorris for his continued interest in the progress of my research and his many suggestions and assistance in the writing of this dissertation. I would also like to thank Linda Shellenbarger for her expertise in typing. IV tS&e TABLE OF CONTENTS Page CHAPTER 0 INTRODUCTION............................................................. 1 CHAPTER 1 DISTANCES BETWEEN BINARY RELATIONS .... 4 CHAPTER 2 DISTANCES BETWEEN PARTITIONS AND OTHER SETS OF SUBSETS......................................................................37 CHAPTER 3 A CONSENSUS FOR DISCRETE STRUCTURES. ... 65 BIBLIOGRAPHY 78 CHAPTER 0 INTRODUCTION In 1951, K. Arrow [2] listed several "reasonable" axioms which should be satisfied by social welfare functions. The axioms proved to be inconsistent, that is, there was no social welfare function that satisfied all of the axioms. Much work has since been done, revising Arrow's axioms in order to obtain characterizations of various social welfare functions. In 1962, Kemeny and Snell [18] gave another approach to the problem of determining "good" social y welfare functions. They gave an axiomatic characterization of a distance function on the collection of choices and then examined properties of medians with respect to the resulting distance function. K. Bogart [5,6] generalized the work of Kemeny and Snell and showed that in many instances, majority rule resulted in a median for certain collections. In numerical taxonomy, and other areas of science, there is considerable interest in the comparison of hierarchical classifications of collections of objects. Several types of "distance functions" have been proposed and their relative advantages discussed [10,13,15,20, 27,28,30]. An axiomatic development of both distance concepts and consensus techniques on the various structures involved is an -1- 2 important step in the attempt to quantify some of the subjective analysis which takes place in these areas. Similar questions also arise in the area of non-hierarchical classification techniques, notably in cases concerning partitions of sets [8,12,22]. Chapter 1 begins with a summary of a portion of K. Bogart's results found in [5], which is an extension of that of Kemeny and Snell [18]. These results are then generalized to arbitrary collec­ tions of binary relations on a finite set J. The seven axioms listed by Bogart are eventually replaced by a pair of axioms which are equivalent to Bogart's on the collections of binary relations considered by him. Chapter 2 deals with similar concepts for sets of subsets of j/. It first parallels the development in Chapter 1, then, following along the lines of a paper by E. L. Perry [22], examines distance concepts for collections of partitions that generalize to a new distance function on sets of subsets. Several representations of sets of subsets are introduced and their relative advantages discussed in light of particular applications. The last chapter examines the question of consensus for the various discrete structures of Chapters 1 and 2. First, Bogart's results for collections of preference relations [5,6] are extended to arbitrary collections of binary relations and sets of subsets. Majority rule is shown to be a median in each case (with respect to the distance functions characterized in Chapters 1 and 2) and questions of existence and uniqueness are examined. 3 For sets of subsets and the extension of Perry's distance function, a different consensus is defined. With the proper representation, it is shown that this may also be viewed as a type of majority rule. Questions of existence and uniqueness are then examined in this context. CHAPTER 1 DISTANCES BETWEEN BINARY RELATIONS The use of binary relations to model preferences on a collection of objects has been widely accepted in the behavioral sciences [5, 26,33,34]. If ji is a finite collection of objects and a and b are elements of j/, then we may represent the preference of a to b by the ordered pair, (b,a). An individual's "preferences" among the elements of if can then be represented by a binary relation, R, on jf, where (b,a) £ R means the individual prefers a to b. Not all binary relations on if can be reasonably interpreted as someone's preferences. For example, {(a,a)} is a binary relation on jf = {a,b}. The definition of "preference" tacitly assumes the comparison of at least two distinct objects, and therefore, this relation could not be the representation of an individual's preferences in if. If a binary relation, R, on if, is to represent preferences, the pair (a, a) should not be an element of R for any a in ft. That is, R should be an irreftexive relation on if. There are other commonly accepted properties of the relation "is preferred to" that can be easily interpreted in the language of binary relations. If a,b € / and a is preferred to b, then b cannot also be preferred to a. Thus, if (b,a) € R, then (a,b) £ R or R is an -4- 5 antisymmetric relation. Preference is usually thought to be transitive: if a is preferred to b, and b to c, then a is preferred to c. In ordered pair notation: if (b,a) € R and (c,b) € R, then (c,a) £ R or, R is a transitive relation. The set j/ will always represent a finite collection of objects. DEFINITION 1.1. A preference relation on J is a binary relation, R (R£ that is irreflexive and transitive. If R is a preference relation on xf, and (a,b) € R, then (b,a) <£ R. Otherwise, since R is transitive, both (a,a) and (b,b) £ R. But R is irreflexive. Preference relations therefore, are antisymmetric, which the previous discussion indicated was a desirable property. In some applications it is useful to consider binary relations which are irreflexive and antisymmetric. Bogart calls these intransitive preference relations or antisymmetric orderings [6]. Associated with each preference relation on J is a partial order and its associated Hasse diagram. If R is a preference relation on J, for each a,b € xf, define a < b if and only if (a,b) £ R. Since R is transitive and antisymmetric, ,<) is a partially ordered set. Since R is irreflexive, a / a for all a € xf and hence '<' is what is called a strict partial order on xf. Example 1.1 shows how a preference relation can be represented in an order theoretic sense by the Hasse diagram of its associated partially ordered set. 6 EXAMPLE 1.1. Let J = {1,2,3,4}, P = {(1,2),(1,3),(1,4),(3,4)}, and Q = {(1,2),(1,3),(1,4)}. P and Q are preference relations on j<f. Their associated Hasse diagrams are: 3 In an attempt to quantify the concept of "agreement between preferences", several "distance functions" on the collection of preference relations on J have been proposed and their relative advantages widely discussed [9,23,24]. if will always denote a collection of binary relations. The underlying set will be clear from the context. DEFINITION 1.2 , A distance function on g is a real valued function, d: £ * £ -> R, satisfying the following properties: DI: If A,B € £ then d(A,B) 0. Equality holds if and only if A = B D2: If A,B € £ then d(A,B) = d(B,A). D3: If A,B,C €$ then d(A,C) < d(A,B) + d(B,C). A distance function on £ is usually called a metric and (£,d) a metric space. K. Bogart, generalizing the work of Kemeny and Snell [18], lists properties DI, D2, and D3, along with four other "reasonable" properties, as a collection of axioms that any measure of distance on collections of preference relations should satisfy [5]. 7 Before listing these additional axioms I will define some geometrical concepts in collections of binary relations. These concepts are generalizations of Bogart's definitions. If we consider ~P, the collection of all preference relations on , there is a natural relationship that sometimes occurs among three elements of "P, P, Q, and R. The preferences represented by Q are said to be "between" those of P and R if Q prefers b to a whenever both P and R do and only if at least one does. This relationship is made more precise by the following definition. DEFINITION 1.3. Let P,Q,R € £. Q is between P and R (denoted B(P,Q,R)) if and only if PDRCQCPUR. If in addition Q / P and Q / R, then Q is strictly between P and R (B*(P,Q,R)). DEFINITION 1.4. Let P,Q £ £. A line segment from P to Q is a sequence, P = P ,P2,...,Pn = Q, of relations from Ç which satisfies the following conditions: 1.
Recommended publications
  • Relations-Handoutnonotes.Pdf
    Introduction Relations Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Definition A binary relation from a set A to a set B is a subset R ⊆ A × B = {(a, b) | a ∈ A, b ∈ B} Spring 2006 Note the difference between a relation and a function: in a relation, each a ∈ A can map to multiple elements in B. Thus, Computer Science & Engineering 235 relations are generalizations of functions. Introduction to Discrete Mathematics Sections 7.1, 7.3–7.5 of Rosen If an ordered pair (a, b) ∈ R then we say that a is related to b. We [email protected] may also use the notation aRb and aRb6 . Relations Relations Graphical View To represent a relation, you can enumerate every element in R. A B Example a1 b1 a Let A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3} let R be a 2 relation from A to B as follows: a3 b2 R = {(a1, b1), (a1, b2), (a1, b3), (a2, b1), a4 (a3, b1), (a3, b2), (a3, b3), (a5, b1)} b3 a5 You can also represent this relation graphically. Figure: Graphical Representation of a Relation Relations Reflexivity On a Set Definition Definition A relation on the set A is a relation from A to A. I.e. a subset of A × A. There are several properties of relations that we will look at. If the ordered pairs (a, a) appear in a relation on a set A for every a ∈ A Example then it is called reflexive.
    [Show full text]
  • On the Satisfiability Problem for Fragments of the Two-Variable Logic
    ON THE SATISFIABILITY PROBLEM FOR FRAGMENTS OF TWO-VARIABLE LOGIC WITH ONE TRANSITIVE RELATION WIESLAW SZWAST∗ AND LIDIA TENDERA Abstract. We study the satisfiability problem for two-variable first- order logic over structures with one transitive relation. We show that the problem is decidable in 2-NExpTime for the fragment consisting of formulas where existential quantifiers are guarded by transitive atoms. As this fragment enjoys neither the finite model property nor the tree model property, to show decidability we introduce a novel model con- struction technique based on the infinite Ramsey theorem. We also point out why the technique is not sufficient to obtain decid- ability for the full two-variable logic with one transitive relation, hence contrary to our previous claim, [FO2 with one transitive relation is de- cidable, STACS 2013: 317-328], the status of the latter problem remains open. 1. Introduction The two-variable fragment of first-order logic, FO2, is the restriction of classical first-order logic over relational signatures to formulas with at most two variables. It is well-known that FO2 enjoys the finite model prop- erty [23], and its satisfiability (hence also finite satisfiability) problem is NExpTime-complete [7]. One drawback of FO2 is that it can neither express transitivity of a bi- nary relation nor say that a binary relation is a partial (or linear) order, or an equivalence relation. These natural properties are important for prac- arXiv:1804.09447v3 [cs.LO] 9 Apr 2019 tical applications, thus attempts have been made to investigate FO2 over restricted classes of structures in which some distinguished binary symbols are required to be interpreted as transitive relations, orders, equivalences, etc.
    [Show full text]
  • Factorisations of Some Partially Ordered Sets and Small Categories
    Factorisations of some partially ordered sets and small categories Tobias Schlemmer Received: date / Accepted: date Abstract Orbits of automorphism groups of partially ordered sets are not necessarily con- gruence classes, i.e. images of an order homomorphism. Based on so-called orbit categories a framework of factorisations and unfoldings is developed that preserves the antisymmetry of the order Relation. Finally some suggestions are given, how the orbit categories can be represented by simple directed and annotated graphs and annotated binary relations. These relations are reflexive, and, in many cases, they can be chosen to be antisymmetric. From these constructions arise different suggestions for fundamental systems of partially ordered sets and reconstruction data which are illustrated by examples from mathematical music theory. Keywords ordered set · factorisation · po-group · small category Mathematics Subject Classification (2010) 06F15 · 18B35 · 00A65 1 Introduction In general, the orbits of automorphism groups of partially ordered sets cannot be considered as equivalence classes of a convenient congruence relation of the corresponding partial or- ders. If the orbits are not convex with respect to the order relation, the factor relation of the partial order is not necessarily a partial order. However, when we consider a partial order as a directed graph, the direction of the arrows is preserved during the factorisation in many cases, while the factor graph of a simple graph is not necessarily simple. Even if the factor relation can be used to anchor unfolding information [1], this structure is usually not visible as a relation. According to the common mathematical usage a fundamental system is a structure that generates another (larger structure) according to some given rules.
    [Show full text]
  • Math 475 Homework #3 March 1, 2010 Section 4.6
    Student: Yu Cheng (Jade) Math 475 Homework #3 March 1, 2010 Section 4.6 Exercise 36-a Let ͒ be a set of ͢ elements. How many different relations on ͒ are there? Answer: On set ͒ with ͢ elements, we have the following facts. ) Number of two different element pairs ƳͦƷ Number of relations on two different elements ) ʚ͕, ͖ʛ ∈ ͌, ʚ͖, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ͦƐƳvƷͮ) ͦƐ)! ġ ͮ) ʚ ʛ v 2ͦƐƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ ͮ) Ɣ 2) . b. How many of these relations are reflexive? Answer: We still have ) number of relations on element pairs to choose from, but we have to 2 Ɛ ƳͦƷ ƍ ͢ include the reflexive one, ʚ͕, ͕ʛ ∈ ͌. There are ͢ relations of this kind. Therefore there are ͦƐ)! ġ ġ ʚ ʛ 2ƳͦƐƳvƷͮ)Ʒͯ) Ɣ 2ͦƐƳvƷ Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ . c. How many of these relations are symmetric? Answer: To select only the symmetric relations on set ͒ with ͢ elements, we have the following facts. ) Number of symmetric relation pairs between two elements ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ƳvƷͮ) )! )ʚ)ͯͥʛ )ʚ)ͮͥʛ ġ ͮ) ͮ) 2ƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2 ͦ Ɣ 2 ͦ . d.
    [Show full text]
  • PROBLEM SET THREE: RELATIONS and FUNCTIONS Problem 1
    PROBLEM SET THREE: RELATIONS AND FUNCTIONS Problem 1 a. Prove that the composition of two bijections is a bijection. b. Prove that the inverse of a bijection is a bijection. c. Let U be a set and R the binary relation on ℘(U) such that, for any two subsets of U, A and B, ARB iff there is a bijection from A to B. Prove that R is an equivalence relation. Problem 2 Let A be a fixed set. In this question “relation” means “binary relation on A.” Prove that: a. The intersection of two transitive relations is a transitive relation. b. The intersection of two symmetric relations is a symmetric relation, c. The intersection of two reflexive relations is a reflexive relation. d. The intersection of two equivalence relations is an equivalence relation. Problem 3 Background. For any binary relation R on a set A, the symmetric interior of R, written Sym(R), is defined to be the relation R ∩ R−1. For example, if R is the relation that holds between a pair of people when the first respects the other, then Sym(R) is the relation of mutual respect. Another example: if R is the entailment relation on propositions (the meanings expressed by utterances of declarative sentences), then the symmetric interior is truth- conditional equivalence. Prove that the symmetric interior of a preorder is an equivalence relation. Problem 4 Background. If v is a preorder, then Sym(v) is called the equivalence rela- tion induced by v and written ≡v, or just ≡ if it’s clear from the context which preorder is under discussion.
    [Show full text]
  • Section 4.1 Relations
    Binary Relations (Donny, Mary) (cousins, brother and sister, or whatever) Section 4.1 Relations - to distinguish certain ordered pairs of objects from other ordered pairs because the components of the distinguished pairs satisfy some relationship that the components of the other pairs do not. 1 2 The Cartesian product of a set S with itself, S x S or S2, is the set e.g. Let S = {1, 2, 4}. of all ordered pairs of elements of S. On the set S x S = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), Let S = {1, 2, 3}; then (2, 4), (4, 1), (4, 2), (4, 4)} S x S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) , (3, 3)} For relationship of equality, then (1, 1), (2, 2), (3, 3) would be the A binary relation can be defined by: distinguished elements of S x S, that is, the only ordered pairs whose components are equal. x y x = y 1. Describing the relation x y if and only if x = y/2 x y x < y/2 For relationship of one number being less than another, we Thus (1, 2) and (2, 4) satisfy . would choose (1, 2), (1, 3), and (2, 3) as the distinguished ordered pairs of S x S. x y x < y 2. Specifying a subset of S x S {(1, 2), (2, 4)} is the set of ordered pairs satisfying The notation x y indicates that the ordered pair (x, y) satisfies a relation .
    [Show full text]
  • Relations April 4
    math 55 - Relations April 4 Relations Let A and B be two sets. A (binary) relation on A and B is a subset R ⊂ A × B. We often write aRb to mean (a; b) 2 R. The following are properties of relations on a set S (where above A = S and B = S are taken to be the same set S): 1. Reflexive: (a; a) 2 R for all a 2 S. 2. Symmetric: (a; b) 2 R () (b; a) 2 R for all a; b 2 S. 3. Antisymmetric: (a; b) 2 R and (b; a) 2 R =) a = b. 4. Transitive: (a; b) 2 R and (b; c) 2 R =) (a; c) 2 R for all a; b; c 2 S. Exercises For each of the following relations, which of the above properties do they have? 1. Let R be the relation on Z+ defined by R = f(a; b) j a divides bg. Reflexive, antisymmetric, and transitive 2. Let R be the relation on Z defined by R = f(a; b) j a ≡ b (mod 33)g. Reflexive, symmetric, and transitive 3. Let R be the relation on R defined by R = f(a; b) j a < bg. Symmetric and transitive 4. Let S be the set of all convergent sequences of rational numbers. Let R be the relation on S defined by f(a; b) j lim a = lim bg. Reflexive, symmetric, transitive 5. Let P be the set of all propositional statements. Let R be the relation on P defined by R = f(a; b) j a ! b is trueg.
    [Show full text]
  • Relations II
    CS 441 Discrete Mathematics for CS Lecture 22 Relations II Milos Hauskrecht [email protected] 5329 Sennott Square CS 441 Discrete mathematics for CS M. Hauskrecht Cartesian product (review) •Let A={a1, a2, ..ak} and B={b1,b2,..bm}. • The Cartesian product A x B is defined by a set of pairs {(a1 b1), (a1, b2), … (a1, bm), …, (ak,bm)}. Example: Let A={a,b,c} and B={1 2 3}. What is AxB? AxB = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)} CS 441 Discrete mathematics for CS M. Hauskrecht 1 Binary relation Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B. Example: Let A={a,b,c} and B={1,2,3}. • R={(a,1),(b,2),(c,2)} is an example of a relation from A to B. CS 441 Discrete mathematics for CS M. Hauskrecht Representing binary relations • We can graphically represent a binary relation R as follows: •if a R b then draw an arrow from a to b. a b Example: • Let A = {0, 1, 2}, B = {u,v} and R = { (0,u), (0,v), (1,v), (2,u) } •Note: R A x B. • Graph: 2 0 u v 1 CS 441 Discrete mathematics for CS M. Hauskrecht 2 Representing binary relations • We can represent a binary relation R by a table showing (marking) the ordered pairs of R. Example: • Let A = {0, 1, 2}, B = {u,v} and R = { (0,u), (0,v), (1,v), (2,u) } • Table: R | u v or R | u v 0 | x x 0 | 1 1 1 | x 1 | 0 1 2 | x 2 | 1 0 CS 441 Discrete mathematics for CS M.
    [Show full text]
  • Chарtеr 2 RELATIONS
    Ch=FtAr 2 RELATIONS 2.0 INTRODUCTION Every day we deal with relationships such as those between a business and its telephone number, an employee and his or her work, a person and other person, and so on. Relationships such as that between a program and a variable it uses and that between a computer language and a valid statement in this language often arise in computer science. The relationship between the elements of the sets is represented by a structure, called relation, which is just a subset of the Cartesian product of the sets. Relations are used to solve many problems such as determining which pairs of cities are linked by airline flights in a network or producing a useful way to store information in computer databases. In this chapter, we will study equivalence relation, equivalence class, composition of relations, matrix of relations, and closure of relations. 2.1 RELATION A relation is a set of ordered pairs. Let A and B be two sets. Then a relation from A to B is a subset of A × B. Symbolically, R is a relation from A to B iff R Í A × B. If (x, y) Î R, then we can express it by writing xRy and say that x is related to y with relation R. Thus, (x, y) Î R Û xRy 2.2 RELATION ON A SET A relation R on a set A is the subset of A × A, i.e., R Í A × A. Here both the sets A and B are same. -xample Let A = {2, 3, 4, 5} and B = {2, 4, 6, 10, 12}.
    [Show full text]
  • Relations CIS002-2 Computational Alegrba and Number Theory
    Relations CIS002-2 Computational Alegrba and Number Theory David Goodwin [email protected] 11:00, Tuesday 29th November 2011 bg=whiteRelations Equivalence Relations Class Exercises Outline 1 Relations Inverse Relation Composition Reflexive relation 2 Equivalence Symmetric relation Relations Antisymmetric relation Equivalence relation Transitive relation Equivalence classes Partial order 3 Class Exercises bg=whiteRelations Equivalence Relations Class Exercises Outline 1 Relations Inverse Relation Composition Reflexive relation 2 Equivalence Symmetric relation Relations Antisymmetric relation Equivalence relation Transitive relation Equivalence classes Partial order 3 Class Exercises bg=whiteRelations Equivalence Relations Class Exercises Relations A (binary) relation R from a set X to a set Y is a subset of the Cartesian product X × Y . If (x; y 2 R, we write xRy and say that x is related to y. If X = Y , we call R a (binary) relation on X . A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties: • The domain of f is equal to X . • For each x 2 X , there is exactly one y 2 Y such that (x; y) 2 f bg=whiteRelations Equivalence Relations Class Exercises Relations - example Let X = f2; 3; 4g and Y = f3; 4; 5; 6; 7g If we define a relation R from X to Y by (x; y) 2 R if x j y we obtain R = f(2; 4); (2; 6); (3; 3); (3; 6); (4; 4)g bg=whiteRelations Equivalence Relations Class Exercises Relations - reflexive A relation R on a set X is reflexive if (x; x) 2 X , if (x; y) 2 R for all x 2 X .
    [Show full text]
  • CDM Relations
    CDM 1 Relations Relations Operations and Properties Orders Klaus Sutner Carnegie Mellon University Equivalence Relations 30-relations 2017/12/15 23:22 Closures Relations 3 Binary Relations 4 We have seen how to express general concepts (or properties) as sets: we form the set of all objects that “fall under” the concept (in Frege’s Let’s focus on the binary case where two objects are associated, though terminology). Thus we can form the set of natural numbers, of primes, of not necessarily from the same domain. reals, of continuous functions, of stacks, of syntactically correct The unifying characteristic is that we have some property (attribute, C-programs and so on. quality) that can hold or fail to hold of any two objects from the Another fundamental idea is to consider relationships between two or appropriate domains. more objects. Here are some typical examples: Standard notation: for a relation P and suitable objects a and b write P (a, b) for the assertion that P holds on a and b. divisibility relation on natural numbers, Thus we can associate a truth value with P (a, b): the assertion holds if a less-than relation on integers, and b are indeed related by P , and is false otherwise. greater-than relation on rational numbers, For example, if P denotes the divisibility relation on the integers then the “attends course” relation for students and courses, P (3, 9) holds whereas P (3, 10) is false. the “is prerequisite” relation for courses, Later we will be mostly interested in relations where we can effectively the “is a parent of” relation for humans, determine whether P (a, b) holds, but for the time being we will consider the “terminates on input and produces output” relation for programs the general case.
    [Show full text]
  • Residuated Relational Systems We Begin by Introducing the Central Notion That Will Be Used Through- out the Paper
    RESIDUATED RELATIONAL SYSTEMS S. BONZIO AND I. CHAJDA Abstract. The aim of the present paper is to generalize the con- cept of residuated poset, by replacing the usual partial ordering by a generic binary relation, giving rise to relational systems which are residuated. In particular, we modify the definition of adjoint- ness in such a way that the ordering relation can be harmlessly replaced by a binary relation. By enriching such binary relation with additional properties we get interesting properties of residu- ated relational systems which are analogical to those of residuated posets and lattices. 1. Introduction The study of binary relations traces back to the work of J. Riguet [14], while a first attempt to provide an algebraic theory of relational systems is due to Mal’cev [12]. Relational systems of different kinds have been investigated by different authors for a long time, see for example [4], [3], [8], [9], [10]. Binary relational systems are very im- portant for the whole of mathematics, as relations, and thus relational systems, represent a very general framework appropriate for the de- scription of several problems, which can turn out to be useful both in mathematics and in its applications. For these reasons, it is fundamen- tal to study relational systems from a structural point of view. In order to get deeper results meeting possible applications, we claim that the usual domain of binary relations shall be expanded. More specifically, arXiv:1810.09335v1 [math.LO] 22 Oct 2018 our aim is to study general binary relations on an underlying algebra whose operations interact with them.
    [Show full text]