Computing the Greatest Common Divisor

Total Page:16

File Type:pdf, Size:1020Kb

Computing the Greatest Common Divisor Math 470 Communication and Cryptography Fall 2005 Computing the Greatest Common Divisor Let a and b be fixed positive integers. We recall that the greatest common divisor of a and b is the largest integer d dividing both a and b, and is denoted in the text by gcd(a; b). We discuss three important ways to compute the greatest common divisor. One way is by prime factorization. The second is the Euclidean algorithm. The third is by a tally version of the generalized Euclidean algorithm. It is important that you understand and can use all three methods. This discussion references materials in the Trappe & Washington text on pp. 66-68 (Greatest Common Divisor) and pp. 69-70 (Solving ax + by = d). Computing gcd(a; b) by prime factorization. Reference T&W, p. 66. Computing gcd(a; b) by prime factorization is easy in theory. It is also easy in practice provided that you can readily find the prime factors of a and b. However as we will see later in the course, it is commonly not the case that we cannot easily find the prime factors of a given number. The method is this. Factor a and b into primes. Ignore prime factors that appear in a or in b but not both. For each prime factor that appears in both factorizations, choose the smaller power of that prime. Multiply these prime factors together to obtain gcd(a; b). Here are some examples: Examples. (a) Compute gcd(22 · 35 · 53; 34 · 56 · 7). The prime 2 divides the first number but not the second, and the prime 7 divides the second number but not the first. Neither number will be a factor of the gcd. The common prime factors are 3 and 5. The prime 3 appears as 35 and 34,andwe choose the lower power 34. Similarly we choose the lower power 53. The gcd is 34 · 53. (b) Compute gcd(22 · 35; 56 · 7). The two numbers share no prime factors, so the gcd is 1. Computing gcd(a; b) by the Euclidean algorithm. Reference T&W, p. 67. The Euclidean algorithm for calculating greatest common divisors is very simple and fast. It is a descent algorithm in the sense that we will do a sequence of simple opera- tions that produce a decreasing sequence of posititve integers. When that sequence terminates in a finite number of steps as it must (why?), then the last number is the gcd. Let us illustate. The general idea is to divide the smaller number into the larger and keep only the remainder, if any. Replace the larger number by the smaller, and replace the smaller number by the remainder. Repeat. At every step, we produce a remainder which must be smaller than all previous remainders. Greatest Common Divisor Copyright c 2005 by Jon T. Pitts Page 1 of 6 Math 470 Communication and Cryptography Fall 2005 At some point there is no remainder (or equivalently the remainder is zero) at which time the last remainder that you calculated is the gcd. Example. Find gcd(1180; 482) by the Euclidean algorithm. Proceed as follows. (1) Divide 1180 by 482, drop the quotient, and keep the remainder. The remainder is 216. (2) Replace 1180 by 482, and replace 482 by 216.Divide482 by 216 and keep only the remainder. The remainder is 50. (3) Continuing, replace 482 by 216, and replace 216 by 50.Divide216 by 50. The remainder is 16. (4) Divide 50 by 16. The remainder is 2. (5) Divide 16 by 2. There is no remainder. Stop here. The last nonzero remainder is 2. (6) Conclude that gcd(1180; 482) = 2. Computing gcd(a; b) by the tally method. Reference T&W, pp. 66, 69-70. We present a version of what the text calls the extended Euclidean algorithm. We call this version the tally method be cause it reduces the calculation of gcd(a; b) to constructing a simple table. This table has significant advantages: • The table is easy to compute. • The table automatically calculates number x and y such that ax + by =gcd(a; b).Thisisan extremely useful fact. • The table similarly displays all intermediate results. Example. We illustrate the tally method by recalculating the example gcd(a; b), T&W, pp. 66, 69 where a = 1180 and b = 482. These are the same numbers that we just used to illustrate the Euclidean algorithm. However we are going to extract much more information with not much more work. NOTE: In order to avoid notational confusion, notice that we’ve reversed the values of a and b from what is in the text on page 69. This does not change the answer, but we will always wish to begin the table with the larger number and by convention we’ll write that number first. As a result, if you are comparing the calculations here with the example in the text, please notice that the values of numbers xi, yi are swapped compared to the text. The tally method builds a table. The table will have six columns as follows. Greatest Common Divisor Copyright c 2005 by Jon T. Pitts Page 2 of 6 Math 470 Communication and Cryptography Fall 2005 Column 1 We are going to number the lines in our table i =0;1;2:::. The index i will be entered in column 1. Column 2 Corresponding to each i, we calculate numbers mi to be entered into column 2. m0 is always the larger number which we call a. In this example, m0 = a = 1180. m1 is the smaller number which we call b. In this example m1 = b = 482. When we compute row number i+2, we will begin by calculating mi+2 from rows i and i+1. This will be explained below. Columns3and4 For each i, we will be computing mi = xia + yib. Column 3 contains x1 and column 4 contains y1. Obviously x0 =1,y0 =0and x1 =0,y1 =1. Column 5 and 6 Columns 5 and 6 are blank in row 0.Forrowi+1, we will divide mi by mi+1 and compute mi = qi+1mi+1 + ri+1. The quotient qi+1 is entered in column 5 and the remainder ri+1 is entered into column 6. Now we begin the calculations. Row i=0. i mi xi yi qi ri 0 1180 1 0 - - Check that 1180 = m0 = 1180x0 + 482y0 = 1180(1) + 482(0). Row i=1. We calculate this row in two steps. First we can easily fill in the first four entries. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 To fill in q1 and r1,wedividem0 = 1180 by m1 = 482 obtaining a quotient q1 =2and remainder r1 = 216. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 Check that 482 = m1 = 1180x1 + 482y1 = 1180(0) + 482(1). Greatest Common Divisor Copyright c 2005 by Jon T. Pitts Page 3 of 6 Math 470 Communication and Cryptography Fall 2005 Row i=2. We calculate this row from rows i =0and i =1. First, the number m2 is simply the remainder r1 from the previous row. In fact, in general mi+2 = ri+1 at every stage. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 Filling in x2 and y2 are key. The idea is to compute x2 by multiplying x1 by q1 and subtracting it from x0. In equation form, x2 = x0 − x1q1 =1−0(2) = 1.Thevalueofy2is computed similarly as y2 = y0 − y1q1 =0−1(2) = −2. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 1 -2 Finally we complete row 2 by dividing m1 = 482 by m2 = 216 obtaining a quotient q2 =2and remainder r2 =50. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 1 -2 2 50 Check that 216 = m2 = 1180x2 + 482y2 = 1180(1) + 482(−2). Row i=3. We calculate this row from rows i =1and i =2. The number m3 is simply the re- mainder r2 =50from the previous row. Analogously to what we did in row 2, x3 = x1 − x2q2 = 0 − 2(1) = −2 and y3 = y1 − y2q2 =1−(−2)(2) = 5. Finally, we divide m2 = 216 by m3 =50 obtaining a quotient q3 =4and remainder r3 =16. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 1 -2 2 50 3 50 -2 5 4 16 Check that 50 = m3 = 1180x3 + 482y3 = 1180(−2) + 482(5). Greatest Common Divisor Copyright c 2005 by Jon T. Pitts Page 4 of 6 Math 470 Communication and Cryptography Fall 2005 Row i=4. We repeat as for row 3. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 1 -2 2 50 3 50 -2 5 4 16 4 16 9 -22 3 2 Check that 16 = m4 = 1180x4 + 482y4 = 1180(9) + 482(−22). Row i=5. We repeat as for row 4. i mi xi yi qi ri 0 1180 1 0 - - 1 482 0 1 2 216 2 216 1 -2 2 50 3 50 -2 5 4 16 4 16 9 -22 3 2 5 2 -29 71 8 0 We notice that something unusual has occurred. At this step, for this first (and last) time, our re- mainder r5 =0. We are almost at the stopping point and we are ready to read off gcd(1180; 482).
Recommended publications
  • Number Theory Learning Module 3 — the Greatest Common Divisor 1
    Number Theory Learning Module 3 — The Greatest Common Divisor 1 1 Objectives. • Understand the definition of greatest common divisor (gcd). • Learn the basic the properties of the gcd. • Understand Euclid’s algorithm. • Learn basic proofing techniques for greatest common divisors. 2 The Greatest Common Divisor Classical Greek mathematics concerned itself mostly with geometry. The notion of measurement is fundamental to ge- ometry, and the Greeks were the first to provide a formal foundation for this concept. Surprisingly, however, they never used fractions to express measurements (and never developed an arithmetic of fractions). They expressed geometrical measurements as relations between ratios. In numerical terms, these are statements like: 168 is to 120 as 7 is to 4, (2.1) which we would write today as 168{120 7{5. Statements such as (2.1) were natural to greek mathematicians because they viewed measuring as the process of finding a “common integral measure”. For example, we have: 168 24 ¤ 7 120 24 ¤ 5; so that we can use the integer 24 as a “common unit” to measure the numbers 168 and 120. Going back to our example, notice that 24 is not the only common integral measure for the integers 168 and 120, since we also have, for example, 168 6 ¤ 28 and 120 6 ¤ 20. The number 24, however, is the largest integer that can be used to “measure” both 168 and 120, and gives the representation in lowest terms for their ratio. This motivates the following definition: Definition 2.1. Let a and b be integers that are not both zero.
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • 1. the Euclidean Algorithm the Common Divisors of Two Numbers Are the Numbers That Are Divisors of Both of Them
    1. The Euclidean Algorithm The common divisors of two numbers are the numbers that are divisors of both of them. For example, the divisors of 12 are 1, 2, 3, 4, 6, 12. The divisors of 18 are 1, 2, 3, 6, 9, 18. Thus, the common divisors of 12 and 18 are 1, 2, 3, 6. The greatest among these is, perhaps unsurprisingly, called the of 12 and 18. The usual mathematical notation for the greatest common divisor of two integers a and b are denoted by (a, b). Hence, (12, 18) = 6. The greatest common divisor is important for many reasons. For example, it can be used to calculate the of two numbers, i.e., the smallest positive integer that is a multiple of these numbers. The least common multiple of the numbers a and b can be calculated as ab . (a, b) For example, the least common multiple of 12 and 18 is 12 · 18 12 · 18 = . (12, 18) 6 Note that, in order to calculate the right-hand side here it would be counter- productive to multiply 12 and 18 together. It is much easier to do the calculation as follows: 12 · 18 12 = = 2 · 18 = 36. 6 6 · 18 That is, the least common multiple of 12 and 18 is 36. It is important to know the least common multiple when adding two fractions. For example, noting that 12 · 3 = 36 and 18 · 2 = 36, we have 5 7 5 · 3 7 · 2 15 14 15 + 14 29 + = + = + = = . 12 18 12 · 3 18 · 2 36 36 36 36 Note that this way of calculating the least common multiple works only for two numbers.
    [Show full text]
  • The Pollard's Rho Method for Factoring Numbers
    Foote 1 Corey Foote Dr. Thomas Kent Honors Number Theory Date: 11-30-11 The Pollard’s Rho Method for Factoring Numbers We are all familiar with the concepts of prime and composite numbers. We also know that a number is either prime or a product of primes. The Fundamental Theorem of Arithmetic states that every integer n ≥ 2 is either a prime or a product of primes, and the product is unique apart from the order in which the factors appear (Long, 55). The number 7, for example, is a prime number. It has only two factors, itself and 1. On the other hand 24 has a prime factorization of 2 3 × 3. Because its factors are not just 24 and 1, 24 is considered a composite number. The numbers 7 and 24 are easier to factor than larger numbers. We will look at the Sieve of Eratosthenes, an efficient factoring method for dealing with smaller numbers, followed by Pollard’s rho, a method that allows us how to factor large numbers into their primes. The Sieve of Eratosthenes allows us to find the prime numbers up to and including a particular number, n. First, we find the prime numbers that are less than or equal to √͢. Then we use these primes to see which of the numbers √͢ ≤ n - k, ..., n - 2, n - 1 ≤ n these primes properly divide. The remaining numbers are the prime numbers that are greater than √͢ and less than or equal to n. This method works because these prime numbers clearly cannot have any prime factor less than or equal to √͢, as the number would then be composite.
    [Show full text]
  • RSA and Primality Testing
    RSA and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Outline Outline Symmetric key ■ Symmetric key cryptography Public key Number theory ■ RSA Public key cryptography RSA Modular ■ exponentiation Introduction to number theory RSA RSA ■ RSA Greatest common divisor Primality testing ■ Modular exponentiation Correctness of RSA Digital signatures ■ Greatest common divisor ■ Primality testing ■ Correctness of RSA ■ Digital signatures with RSA 2 / 81 Caesar cipher Outline Symmetric key Public key Number theory A B C D E F G H I J K L M N O RSA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RSA Modular D E F G H I J K L M N O P Q R exponentiation RSA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 RSA Greatest common divisor Primality testing P Q R S T U V W X Y Z Æ Ø Å Correctness of RSA Digital signatures 15 16 17 18 19 20 21 22 23 24 25 26 27 28 S T U V W X Y Z Æ Ø Å A B C 18 19 20 21 22 23 24 25 26 27 28 0 1 2 E(m)= m + 3(mod 29) 3 / 81 Symmetric key systems Outline Suppose the following was encrypted using a Caesar cipher and the Symmetric key Public key Danish alphabet. The key is unknown. What does it say? Number theory RSA RSA Modular exponentiation RSA ZQOØQOØ, RI. RSA Greatest common divisor Primality testing Correctness of RSA Digital signatures 4 / 81 Symmetric key systems Outline Suppose the following was encrypted using a Caesar cipher and the Symmetric key Public key Danish alphabet.
    [Show full text]
  • Some Facts from Number Theory
    Computer Science 52 Some Facts from Number Theory Fall Semester, 2014 These notes are adapted from a document that was prepared for a different course several years ago. They may be helpful as a summary of the facts that we use in Computer Science 52 as we study RSA encryption. The exercises in this document are left over from the previous course; although they are a tremendous amount of fun, they are not part of the assigned work for Computer Science 52. 1 Quotients and Remainders If m and n are integers, and n 6= 0, then there is a unique pair of integers q and r satisfying m = qn + r , and 0 ≤ r < jnj. Not surprisingly, q is the quotient and r is the remainder when m is divided by n.1 We say that n divides m, or n is a divisor of m, when the remainder is zero. The notation n j m is used to signify that n divides m. An integer p is a prime number if 1 < jpj and the only divisors of p are ±1 and ±p. We write a ≡ b (mod n) if b − a is divisible by n.2 This notion, called congruence, is an equivalence relation. All the usual laws of arithmetic hold for congruence; for example, we have the distributivity of multiplication over addition and the associa- tivity of multiplication. a(b + c) ≡ ab + ac (mod n) a(bc) ≡ (ab)c (mod n) When computing arithmetic results for a congruence, it does not hurt replace a value by its remainder on division by n.
    [Show full text]
  • Divisibility and Greatest Common Divisors
    DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1. Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties. Then we will look at two important theorems involving greatest common divisors: Euclid's algorithm and Bezout's identity. The set of integers is denoted Z (from the German word Zahl = number). 2. The Divisibility Relation Definition 2.1. When a and b are integers, we say a divides b if b = ak for some k 2 Z. We then write a j b (read as \a divides b"). Example 2.2. We have 2 j 6 (because 6 = 2 · 3), 4 j (−12), and 5 j 0. We have ±1 j b for every b 2 Z. However, 6 does not divide 2 and 0 does not divide 5. Divisibility is a relation, much like inequalities. In particular, the relation 2 j 6 is not the number 3, even though 6 = 2 · 3. Such an error would be similar to the mistake of confusing the relation 5 < 9 with the number 9 − 5. Notice divisibility is not symmetric: if a j b, it is usually not true that b j a, so you should not confuse the roles of a and b in this relation: 4 j 20 but 20 - 4. Remark 2.3. Learn the definition of a j b as given in Definition 2.1, and not in the b 0 form \ a is an integer." It essentially amounts to the same thing (exception: 0 j 0 but 0 is not defined), however thinking about divisibility in terms of ratios will screw up your understanding of divisibility in other settings in algebra.
    [Show full text]
  • Number Theory Section Summary: 2.2 the Greatest Common Divisor 1. Definitions 2. Theorems
    Number Theory Section Summary: 2.2 The Greatest Common Divisor “Of special interest is the case in which the remainder in the Division Algo- rithm turns out to be zero.” (p. 20) 1. Definitions Divisible: An integer b is said to be divisible by an integer a =6 0, written a|b, if there exists some integer c such that b = ac. common divisor: An integer d is said to be a common divisor of a and b if both d|a and d|b. greatest common divisor: Let a and b be given integers, with at least one of them non-zero. The greatest common divisor of a and b, denoted gcd(a, b), is the positive integer d satisfying the following: (a) d|a and d|b (b) If c|a and c|b, then c ≤ d. relatively prime: Two integers a and b, not both zero, are said to be relatively prime whenever gcd(a, b)=1. 2. Theorems Theorem 2.2: For integers a, b, c, the following hold: (a) a|0, 1|a, a|a (b) a|1 if and only if a = ±1 (c) If a|b and c|d, then ac|bd. (d) If a|b and b|c, then a|c. (e) a|b and b|a if and only if a = ±b 1 (f) If a|b and b =6 0, then |a|≤|b|. (g) If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y. Theorem 2.3: Given integers a and b, not both zero, there exists integers x and y such that gcd(a, b)= ax + by Proof: 2 Corollary: If a and b are given integers, not both zero, then the set T = {ax + by|x, y are integers} is precisely the set of all multiples of d = gcd(a, b).
    [Show full text]
  • Euclidean Algorithm and Multiplicative Inverses
    Fall 2019 Chris Christensen MAT/CSC 483 Finding Multiplicative Inverses Modulo n Two unequal numbers being set out, and the less begin continually subtracted in turn from the greater, if the number which is left never measures the one before it until an unit is left, the original numbers will be prime to one another. Euclid, The Elements, Book VII, Proposition 1, c. 300 BCE. It is not necessary to do trial and error to determine the multiplicative inverse of an integer modulo n. If the modulus being used is small (like 26) there are only a few possibilities to check (26); trial and error might be a good choice. However, some modern public key cryptosystems use very large moduli and require the determination of inverses. We will now examine a method (that is due to Euclid [c. 325 – 265 BCE]) that can be used to construct multiplicative inverses modulo n (when they exist). Euclid's Elements, in addition to geometry, contains a great deal of number theory – properties of the positive integers. The Euclidean algorithm is Propositions I - II of Book VII of Euclid’s Elements (and Propositions II – III of Book X). Euclid describes a process for determining the greatest common divisor (gcd) of two positive integers. 1 The Euclidean Algorithm to Find the Greatest Common Divisor Let us begin with the two positive integers, say, 13566 and 35742. Divide the smaller into the larger: 35742=×+ 2 13566 8610 Divide the remainder (8610) into the previous divisor (35742): 13566=×+ 1 8610 4956 Continue to divide remainders into previous divisors: 8610=×+ 1 4956 3654 4956=×+ 1 3654 1302 3654=×+ 2 1302 1050 1302=×+ 1 1050 252 1050=×+ 4 252 42 252= 6 × 42 The process stops when the remainder is 0.
    [Show full text]
  • Of 9 Math 3336 Section 4.3 Primes and Greatest Common Divisors
    Math 3336 Section 4.3 Primes and Greatest Common Divisors • Prime Numbers and their Properties • Greatest Common Divisors and • Conjectures and Open Problems Least Common Multiples About Primes • The Euclidian Algorithm • gcds as Linear Combinations Definition: A positive integer greater than 1 is called prime if the only positive factors of are 1 and . A positive integer that is greater than 1 and is not prime is called composite. Example: The integer 11 is prime because its only positive factors are 1 and 11, but 12 is composite because it is divisible by 3, 4, and 6. The Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size. Examples: a. 50 = 2 5 b. 121 = 11 2 c. 256 = 2⋅ 2 8 Theorem: If is a composite integer, then has a prime divisor less than or equal to . Proof: √ Page 1 of 9 Example: Show that 97 is prime. Example: Find the prime factorization of each of these integers a. 143 b. 81 Theorem: There are infinitely many primes. Proof: Page 2 of 9 Questions: 1. The proof of the previous theorem by A. Contrapositive C. Direct B. Contradiction 2. Is the proof constructive OR nonconstructive? 3. Have we shown that Q is prime? The Sieve of Eratosthenes can be used to find all primes not exceeding a specified positive integer. For example, begin with the list of integers between 1 and 100.
    [Show full text]
  • Miller-Rabin Primality Test
    Miller-Rabin Primality Test Gary Fredericks September 22, 2014 About Me I Software engineer at Groupon I Fan of pure math, theoretical CS I @gfredericks_ Why Number Theory? About This Paper I "Probabilistic Algorithm for Testing Primality" I Michael O. Rabin, 1977 I Modies a deterministic but presumptive algorithm published by Gary L. Miller in 1976 I The algorithm has become known as the "Miller-Rabin Primality Test" I The paper itself is not very accessible (whoopsie-doodle) About This Talk I Motivate the problem I I.e., why I like numbers I Describe the algorithm I Try to give an intuition for why it works Numbers Numbers 0; 1; 2; 3; 4; 5; 6;::: 3 + 8 = 11 6 · 7 = 42 Addition Addition shifts the number line. 1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,... 2 + 7: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,... ? + ? = 53671 I 0 + 53671 I 1 + 53670 I 2 + 53669 I 3 + 53668 I ... I 53671 + 0 Multiplication Multiplication scales the number line. 1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 2 * 3: 0, 1, 2, 3, 4, 5, ?·? = 53671 I 1 · 53671 I 53671 · 1 I Um. Divisibility Graph 5 21 15 9 10 7 18 3 20 14 6 2 12 4 22 11 13 17 8 19 23 16 Factoring 24 24 6⋅4 2⋅3⋅4 2⋅3⋅2⋅2 Unique Factorizations 24 8⋅3 6⋅4 12⋅2 4⋅3⋅2 6⋅2⋅2 3⋅2⋅2⋅2 Unique Factorizations A positive integer can be viewed as a multiset of primes.
    [Show full text]
  • To Simplify Or Not to Simplify…
    To Simplify or Not to Simplify… Overview – Activity ID: 8942 Math Concepts Materials Students will discuss fractions and what it means to simplify them • Number sense • TI-34 using prime factorization. Students will then use the calculator to • Finding common MultiView™ simplify fractions manually as well as investigate both the prime factors factorization and greatest common factors of the numerator and • Prime denominator in various fractions. factorization • Division Activity Discuss and review the concept of prime factorization with students. Write an example of a prime number on your paper. Now, write a non-prime number (called a composite number). What makes your first number prime and the second composite? Anticipate a variety of responses. The best response would be that a prime number has no factors or divisors other than itself and 1, while a composite number has at least one additional factor or divisor. Show the class an example of a composite number, and discuss how, regardless of the composite number chosen, it can be broken down into the product of prime numbers. Let’s consider the number 100. One hundred is a composite number because it has factors. Let’s find the prime factorization. Here’s one way: 100 4 · 25 2 · 2 5 · 5 The prime factorization of 100 is 2·2·5·5. Now, let’s look at a second number. Find the prime factorization of 35: 35 5 · 7 Simplifying a fraction containing two composite numbers can be done by dividing both the numerator and denominator by a common factor. Given the fraction 35 , what is a factor both numbers have in 100 common? Looking at the prime factorization of both numbers, the students should be able to see that 5 is the only common factor or common divisor.
    [Show full text]