Deductive Verification of Object-Oriented Software Dynamic Frames, Dynamic Logic and Predicate Abstraction

Total Page:16

File Type:pdf, Size:1020Kb

Deductive Verification of Object-Oriented Software Dynamic Frames, Dynamic Logic and Predicate Abstraction Benjamin Weiß Deductive Verification of Object-Oriented Software Dynamic Frames, Dynamic Logic and Predicate Abstraction Deductive Verification of Object-Oriented Software Dynamic Frames, Dynamic Logic and Predicate Abstraction by Benjamin Weiß Dissertation, Karlsruher Institut für Technologie Fakultät für Informatik Tag der mündlichen Prüfung: 1. Dezember 2010 Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe www.ksp.kit.edu KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/ KIT Scientific Publishing 2011 Print on Demand ISBN 978-3-86644-623-6 Deductive Verification of Object-Oriented Software Dynamic Frames, Dynamic Logic and Predicate Abstraction zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der Fakult¨atf¨urInformatik des Karlsruher Instituts f¨urTechnologie genehmigte Dissertation von Benjamin Weiß aus Heidelberg Tag der m¨undlichenPr¨ufung:1. Dezember 2010 Erster Gutachter: Prof. Dr. Peter H. Schmitt, Karlsruher Institut f¨urTechnologie Zweiter Gutachter: Prof. Dr. Arnd Poetzsch-Heffter, Technische Universit¨atKaiserslautern Acknowledgements First of all, I would like to express my gratitude to my Doktorvater Prof. Dr. Peter H. Schmitt for giving me the opportunity to undertake this project, for his scien- tific guidance, for his continued support of my work, and for the trust he placed in me. I am thankful to Prof. Dr. Arnd Poetzsch-Heffter for agreeing to be the second reviewer of this thesis, and for fulfilling his role with commitment. Thanks also go to Prof. Dr. Ralf Reussner and to Juniorprof. Dr. Mana Taghdiri for being examiners in the thesis defense. I am highly grateful to my former and current colleagues Dr. Christian Engel, David Farag´o,Mattias Ulbrich and Dr. Frank Werner for the inspiring discus- sions, the teamwork, the excellent working atmosphere, and the joint breaks from computer science. The same applies to our new group member Christoph Scheben, and to the members of the other verification-related research groups at the Institute for Theoretical Computer Science: Thorsten Bormer, Daniel Bruns, Dr. Stephan Falke, Aboubakr Achraf El Ghazi, Christoph Gladisch, Florian Merz, Dr. Hendrik Post, Dr. Carsten Sinz, and Dr. Olga Tveretina. Many thanks also go to our administrators Lilian Beckert, Bernd Giesinger and Elke Sauer. This work is deeply rooted in the KeY project, and it would not have been possible without the great work of many KeY people. I would like to sincerely thank the leaders of KeY|Prof. Dr. Bernhard Beckert, Prof. Dr. Reiner H¨ahnle and Prof. Dr. Peter H. Schmitt|as well as all past and present members of the project, and in particular Dr. Wolfgang Ahrendt, Dr. Richard Bubel, Dr. Vladimir Klebanov, Dr. Wojciech Mostowski, Dr. Andreas Roth, Dr. Philipp R¨ummerand Dr. Steffen Schlager. Special thanks go to my friends and family. I gratefully acknowledge the financial support of my work by the Deutsche Forschungsgemeinschaft (DFG), the Karlsruhe Institute of Technology (KIT), and the European Cooperation in Science and Technology (COST). Karlsruhe, December 2010 Benjamin Weiß ix Zusammenfassung (German Summary) Diese Arbeit entstand im Rahmen des Forschungsprojekts KeY. Kernbereich des KeY-Projekts ist die deduktive Verifikation objektorientierter Software, also die Uberpr¨ ufung¨ der Korrektheit objektorientierter Programme mittels logischen Schließens. Das Ergebnis einer erfolgreichen deduktiven Verifikation ist ein for- maler Beweis fur¨ die Korrektheit des untersuchten Programms. Das im Rahmen des KeY-Projekts entwickelte KeY-System erlaubt die deduktive Verifikation von Programmen, die in einer sequentiellen Teilmenge der Programmiersprache Java geschrieben sind. Die Bedeutung des Begriffs Korrektheit ergibt sich aus einer formalen Spezifika- tion, die das gewunschte¨ Verhalten eines konkreten Programms oder Programm- teils beschreibt. Bei der vertragsbasierten Spezifikation (engl.: design by contract) werden die Methoden des Programms mit sogenannten Vertr¨agen versehen, die mit Hilfe von Vor- und Nachbedingungen das Ein-/Ausgabeverhalten der Metho- den beschreiben. Zus¨atzlich werden Objektinvarianten angegeben, die festlegen, wann sich ein Objekt zur Laufzeit in einem \gultigen"¨ Zustand befindet. Eine Art De-facto-Standard fur¨ die vertragsbasierte Spezifikation von Java-Programmen { und die bevorzugte Eingabesprache des KeY-Systems { ist die Java Modeling Language (JML). Ein zentrales Ziel bei der Verifikation objektorientierter Programme ist die Modularit¨at der Verifikation: Einzelne Programmteile (z.B. Methoden) sollen un- abh¨angig von ihrem Programmkontext verifiziert werden, und eine einmal bewie- sene Korrektheitsaussage soll bei Erweiterung des Programms erhalten bleiben. Hierzu muss bereits die Spezifikation geeignet formuliert werden. Insbesondere verwendet man in ¨offentlich sichtbaren Spezifikationen nicht die internen Daten- strukturen des spezifizierten Programmteils, sondern fuhrt¨ sogenannte abstrakte Variablen ein (die in zwei unterschiedlichen Auspr¨agungen auch als Modell- und Geistervariablen bekannt sind). Abstrakte Variablen existieren nur auf der Ebene der Spezifikation, und ihre Beziehung zu den konkreten Datenstrukturen wird als Implementierungsgeheimnis behandelt. Das Konzept der abstrakten Variablen ist zwar im Prinzip seit den 1970er Jahren bekannt, aber im Detail mit einigen Schwierigkeiten verbunden, deren L¨osung bis heute Forschungsgegenstand ist. Interessant ist insbesondere das Zu- sammenspiel von abstrakten Variablen mit Aussagen uber¨ die Speicherstellen, die von einem Programmteil h¨ochstens ge¨andert werden durfen¨ (engl.: modifies clau- xi ses). Solche Aussagen sind fur¨ die modulare Verifikation unverzichtbar. Auch hier durfen¨ in einer abstrakten Spezifikation nicht direkt die von der Implementierung intern verwendeten Speicherstellen benutzt werden. Umgekehrt h¨angen die Werte abstrakter Variablen von konkreten Speicherstellen ab, die im Allgemeinen eben- falls nicht alle ¨offentlich sind. Das Kernproblem ist letztlich, unerwunschte¨ Alias- Effekte zwischen konkreten und/oder abstrakten Variablen auszuschließen, ohne dabei alle beteiligten Speicherstellen explizit zu kennen. Eine ¨ahnliche Problema- tik ist mit Objektinvarianten verbunden, deren Gultigkeit¨ in einem Programm- zustand typischerweise ebenfalls von nicht-¨offentlichen Speicherstellen abh¨angt. Altere¨ L¨osungsans¨atze fur¨ diesen Problemkreis sind entweder nicht modular, oder sie basieren auf teils drastischen Einschr¨ankungen der erlaubten Program- me. Besitzbasierte Ans¨atze (engl.: ownership) erlauben eine effiziente Behandlung vieler typischer F¨alle, sind aber fur¨ nicht-hierarchische Objektstrukturen weni- ger geeignet. Ein vor wenigen Jahren vorgeschlagener Ansatz ohne derartige Ein- schr¨ankungen ist die Verwendung sogenannter dynamischer Rahmen (engl.: dyna- mic frames): abstrakte Variablen, deren Werte selbst Mengen von Speicherstellen sind. Die fur¨ eine Methode oder eine abstrakte Variable relevanten Speicherberei- che und ihre dynamische Ver¨anderung zur Laufzeit werden hier mit Hilfe von Vor- und Nachbedingungen und mengentheoretischen Operatoren explizit spezifiziert. Trotz ihrer Einfachheit und Allgemeinheit hat diese Technik bisher noch keinen Einzug in verbreitete vertragsbasierte Spezifikationssprachen wie JML gefunden. Dynamische Logik ist ein etablierter Ansatz zur deduktiven Programmveri- fikation. Dynamische Logik erweitert Pr¨adikatenlogik erster Stufe um modale Operatoren, die ausfuhrbare¨ Programmfragmente enthalten. Eine konkrete Vari- ante der dynamischen Logik, bei der die Programmfragmente in Java geschrieben sind, ist die Grundlage der Verifikation im KeY-System. Eine zentrale Neuerung dieser Variante der dynamischen Logik ist das Konzept der expliziten Zustands- aktualisierungen (engl.: updates), mit deren Hilfe Zustandsuberg¨ ¨ange des Pro- gramms syntaktisch in einer programmiersprachenunabh¨angigen Form dargestellt werden. Dies erlaubt es, die deduktive Programmverifikation als eine symbolische Ausfuhrung¨ des Programms zu fassen. Auf dynamischer Logik basierende Verifikationsverfahren bieten bisher keine Unterstutzung¨ fur¨ Ans¨atze wie dynamische Rahmen, und erreichen daher das Ziel der Modularit¨at nur in begrenztem Umfang. In der dynamischen Logik des KeY-Systems ist eine Unterstutzung¨ von dynamischen Rahmen nicht unmittelbar m¨oglich, da die der Logik zugrundeliegende Modellierung des Halden-Speichers mit sogenannten nichtrigiden Funktionssymbolen es zwar erlaubt, in logischen Formeln uber¨ die Werte von Speicherstellen in Programmzust¨anden zu sprechen, nicht aber uber¨ die Speicherstellen als solche. Ein weiteres Ziel bei der deduktiven Verifikation objektorientierter Programme ist die weitestm¨ogliche Automatisierung des Verifikationsvorgangs. Neben Inter- xii aktionen zum Schlussfolgern auf pr¨adikatenlogischer Ebene ist Benutzerinterak- tion in einer Verifikationsumgebung wie dem KeY-System vor allem zur Behand- lung von Schleifen in Programmen erforderlich. Schleifen k¨onnen bei der symbo- lischen Ausfuhrung¨ des Programms im Allgemeinen nicht automatisch behandelt werden, sondern es mussen¨ Schleifeninvarianten angegeben werden, also pr¨adi- katenlogische Formeln uber¨ den Variablen des Programms, die zu Beginn eines jeden Durchlaufs der Schleife gelten. Andererseits
Recommended publications
  • Well-Founded Functions and Extreme Predicates in Dafny: a Tutorial
    EPiC Series in Computing Volume 40, 2016, Pages 52–66 IWIL-2015. 11th International Work- shop on the Implementation of Logics Well-founded Functions and Extreme Predicates in Dafny: A Tutorial K. Rustan M. Leino Microsoft Research [email protected] Abstract A recursive function is well defined if its every recursive call corresponds a decrease in some well-founded order. Such well-founded functions are useful for example in computer programs when computing a value from some input. A boolean function can also be defined as an extreme solution to a recurrence relation, that is, as a least or greatest fixpoint of some functor. Such extreme predicates are useful for example in logic when encoding a set of inductive or coinductive inference rules. The verification-aware programming language Dafny supports both well-founded functions and extreme predicates. This tutorial describes the difference in general terms, and then describes novel syntactic support in Dafny for defining and proving lemmas with extreme predicates. Various examples and considerations are given. Although Dafny’s verifier has at its core a first-order SMT solver, Dafny’s logical encoding makes it possible to reason about fixpoints in an automated way. 0. Introduction Recursive functions are a core part of computer science and mathematics. Roughly speaking, when the definition of such a function spells out a terminating computation from given arguments, we may refer to it as a well-founded function. For example, the common factorial and Fibonacci functions are well-founded functions. There are also other ways to define functions. An important case regards the definition of a boolean function as an extreme solution (that is, a least or greatest solution) to some equation.
    [Show full text]
  • Programming Language Features for Refinement
    Programming Language Features for Refinement Jason Koenig K. Rustan M. Leino Stanford University Microsoft Research [email protected] [email protected] Algorithmic and data refinement are well studied topics that provide a mathematically rigorous ap- proach to gradually introducing details in the implementation of software. Program refinements are performed in the context of some programming language, but mainstream languages lack features for recording the sequence of refinement steps in the program text. To experiment with the combination of refinement, automated verification, and language design, refinement features have been added to the verification-aware programming language Dafny. This paper describes those features and reflects on some initial usage thereof. 0. Introduction Two major problems faced by software engineers are the development of software and the maintenance of software. In addition to fixing bugs, maintenance involves adapting the software to new or previously underappreciated scenarios, for example, using new APIs, supporting new hardware, or improving the performance. Software version control systems track the history of software changes, but older versions typically do not play any significant role in understanding or evolving the software further. For exam- ple, when a simple but inefficient data structure is replaced by a more efficient one, the program edits are destructive. Consequently, understanding the new code may be significantly more difficult than un- derstanding the initial version, because the source code will only show how the more complicated data structure is used. The initial development of the software may proceed in a similar way, whereby a software engi- neer first implements the basic functionality and then extends it with additional functionality or more advanced behaviors.
    [Show full text]
  • Developing Verified Sequential Programs with Event-B
    UNIVERSITY OF SOUTHAMPTON Developing Verified Sequential Programs with Event-B by Mohammadsadegh Dalvandi A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Physical Sciences and Engineering Electronics and Computer Science April 2018 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy by Mohammadsadegh Dalvandi The constructive approach to software correctness aims at formal modelling of the in- tended behaviour and structure of a system in different levels of abstraction and verifying properties of models. The target of analytical approach is to verify properties of the final program code. A high level look at these two approaches suggests that the con- structive and analytical approaches should complement each other well. The aim of this thesis is to build a link between Event-B (constructive approach) and Dafny (analytical approach) for developing sequential verified programs. The first contribution of this the- sis is a tool supported method for transforming Event-B models to simple Dafny code contracts (in the form of method pre- and post-conditions). Transformation of Event-B formal models to Dafny method declarations and code contracts is enabled by a set of transformation rules. Using this set of transformation rules, one can generate code contracts from Event-B models but not implementations. The generated code contracts must be seen as an interface that can be implemented. If there is an implementation that satisfies the generated contracts then it is considered to be a correct implementation of the abstract Event-B model. A tool for automatic transformation of Event-B models to simple Dafny code contracts is presented.
    [Show full text]
  • Master's Thesis
    FACULTY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS Study programme/specialisation: Computer Science Spring / Autumn semester, 20......19 Open/Confidential Author: ………………………………………… Nicolas Fløysvik (signature of author) Programme coordinator: Hein Meling Supervisor(s): Hein Meling Title of master's thesis: Using domain restricted types to improve code correctness Credits: 30 Keywords: Domain restrictions, Formal specifications, Number of pages: …………………75 symbolic execution, Rolsyn analyzer, + supplemental material/other: …………0 Stavanger,……………………….15/06/2019 date/year Title page for Master's Thesis Faculty of Science and Technology Domain Restricted Types for Improved Code Correctness Nicolas Fløysvik University of Stavanger Supervised by: Professor Hein Meling University of Stavanger June 2019 Abstract ReDi is a new static analysis tool for improving code correctness. It targets the C# language and is a .NET Roslyn live analyzer providing live analysis feedback to the developers using it. ReDi uses principles from formal specification and symbolic execution to implement methods for performing domain restriction on variables, parameters, and return values. A domain restriction is an invariant implemented as a check function, that can be applied to variables utilizing an annotation referring to the check method. ReDi can also help to prevent runtime exceptions caused by null pointers. ReDi can prevent null exceptions by integrating nullability into the domain of the variables, making it feasible for ReDi to statically keep track of null, and de- tecting variables that may be null when used. ReDi shows promising results with finding inconsistencies and faults in some programming projects, the open source CoreWiki project by Jeff Fritz and several web service API projects for services offered by Innovation Norway.
    [Show full text]
  • Essays on Emotional Well-Being, Health Insurance Disparities and Health Insurance Markets
    University of New Mexico UNM Digital Repository Economics ETDs Electronic Theses and Dissertations Summer 7-15-2020 Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets Disha Shende Follow this and additional works at: https://digitalrepository.unm.edu/econ_etds Part of the Behavioral Economics Commons, Health Economics Commons, and the Public Economics Commons Recommended Citation Shende, Disha. "Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets." (2020). https://digitalrepository.unm.edu/econ_etds/115 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Economics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Disha Shende Candidate Economics Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Alok Bohara, Chairperson Richard Santos Sarah Stith Smita Pakhale i Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets DISHA SHENDE B.Tech., Shri Guru Govind Singh Inst. of Engr. and Tech., India, 2010 M.A., Applied Economics, University of Cincinnati, 2015 M.A., Economics, University of New Mexico, 2017 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Economics At the The University of New Mexico Albuquerque, New Mexico July 2020 ii DEDICATION To all the revolutionary figures who fought for my right to education iii ACKNOWLEDGEMENT This has been one of the most important bodies of work in my academic career so far.
    [Show full text]
  • Dafny: an Automatic Program Verifier for Functional Correctness K
    Dafny: An Automatic Program Verifier for Functional Correctness K. Rustan M. Leino Microsoft Research [email protected] Abstract Traditionally, the full verification of a program’s functional correctness has been obtained with pen and paper or with interactive proof assistants, whereas only reduced verification tasks, such as ex- tended static checking, have enjoyed the automation offered by satisfiability-modulo-theories (SMT) solvers. More recently, powerful SMT solvers and well-designed program verifiers are starting to break that tradition, thus reducing the effort involved in doing full verification. This paper gives a tour of the language and verifier Dafny, which has been used to verify the functional correctness of a number of challenging pointer-based programs. The paper describes the features incorporated in Dafny, illustrating their use by small examples and giving a taste of how they are coded for an SMT solver. As a larger case study, the paper shows the full functional specification of the Schorr-Waite algorithm in Dafny. 0 Introduction Applications of program verification technology fall into a spectrum of assurance levels, at one extreme proving that the program lives up to its functional specification (e.g., [8, 23, 28]), at the other extreme just finding some likely bugs (e.g., [19, 24]). Traditionally, program verifiers at the high end of the spectrum have used interactive proof assistants, which require the user to have a high degree of prover expertise, invoking tactics or guiding the tool through its various symbolic manipulations. Because they limit which program properties they reason about, tools at the low end of the spectrum have been able to take advantage of satisfiability-modulo-theories (SMT) solvers, which offer some fixed set of automatic decision procedures [18, 5].
    [Show full text]
  • Bounded Model Checking of Pointer Programs Revisited?
    Bounded Model Checking of Pointer Programs Revisited? Witold Charatonik1 and Piotr Witkowski2 1 Institute of Computer Science, University of Wroclaw, [email protected] 2 [email protected] Abstract. Bounded model checking of pointer programs is a debugging technique for programs that manipulate dynamically allocated pointer structures on the heap. It is based on the following four observations. First, error conditions like dereference of a dangling pointer, are express- ible in a fragment of first-order logic with two-variables. Second, the fragment is closed under weakest preconditions wrt. finite paths. Third, data structures like trees, lists etc. are expressible by inductive predi- cates defined in a fragment of Datalog. Finally, the combination of the two fragments of the two-variable logic and Datalog is decidable. In this paper we improve this technique by extending the expressivity of the underlying logics. In a sequence of examples we demonstrate that the new logic is capable of modeling more sophisticated data structures with more complex dependencies on heaps and more complex analyses. 1 Introduction Automated verification of programs manipulating dynamically allocated pointer structures is a challenging and important problem. In [11] the authors proposed a bounded model checking (BMC) procedure for imperative programs that manipulate dynamically allocated pointer struc- tures on the heap. Although in this procedure an explicit bound is assumed on the length of the program execution, the size of the initial data structure is not bounded. Therefore, such programs form infinite and infinitely branching transition systems. The procedure is based on the following four observations. First, error conditions like dereference of a dangling pointer, are expressible in a fragment of first-order logic with two-variables.
    [Show full text]
  • The Merger Control Review
    [ Exclusively for: Suncica Vaglenarova | 09-Sep-15, 07:52 AM ] ©The Law Reviews The MergerThe Control Review Merger Control Review Sixth Edition Editor Ilene Knable Gotts Law Business Research The Merger Control Review The Merger Control Review Reproduced with permission from Law Business Research Ltd. This article was first published in The Merger Control Review - Edition 6 (published in July 2015 – editor Ilene Knable Gotts) For further information please email [email protected] The Merger Control Review Sixth Edition Editor Ilene Knable Gotts Law Business Research Ltd PUBLISHER Gideon Roberton BUSINESS DEVELOPMENT MANAGER Nick Barette SENIOR ACCOUNT MANAGERS Katherine Jablonowska, Thomas Lee, Felicity Bown ACCOUNT MANAGER Joel Woods PUBLISHING MANAGER Lucy Brewer MARKETING ASSISTANT Rebecca Mogridge EDITORIAL COORDINATOR Shani Bans HEAD OF PRODUCTION Adam Myers PRODUCTION EDITOR Anne Borthwick SUBEDITOR Caroline Herbert MANAGING DIRECTOR Richard Davey Published in the United Kingdom by Law Business Research Ltd, London 87 Lancaster Road, London, W11 1QQ, UK © 2015 Law Business Research Ltd www.TheLawReviews.co.uk No photocopying: copyright licences do not apply. The information provided in this publication is general and may not apply in a specific situation, nor does it necessarily represent the views of authors’ firms or their clients. Legal advice should always be sought before taking any legal action based on the information provided. The publishers accept no responsibility for any acts or omissions contained herein. Although the information provided is accurate as of July 2015, be advised that this is a developing area. Enquiries concerning reproduction should be sent to Law Business Research, at the address above.
    [Show full text]
  • Btech Cse Syllabus 2017.Pdf
    NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL RULES AND REGULATIONS SCHEME OF INSTRUCTION AND SYLLABI FOR B.TECH PROGRAM Effective from 2017-18 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL VISION Towards a Global Knowledge Hub, striving continuously in pursuit of excellence in Education, Research, Entrepreneurship and Technological services to the society. MISSION Imparting total quality education to develop innovative, entrepreneurial and ethical future professionals fit for globally competitive environment. Allowing stake holders to share our reservoir of experience in education and knowledge for mutual enrichment in the field of technical education. Fostering product oriented research for establishing a self-sustaining and wealth creating centre to serve the societal needs. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VISION Attaining global recognition in Computer Science & Engineering education, research and training to meet the growing needs of the industry and society. MISSION Imparting quality education through well-designed curriculum in tune with the challenging software needs of the industry. Providing state-of-art research facilities to generate knowledge and develop technologies in the thrust areas of Computer Science and Engineering. Developing linkages with world class organizations to strengthen industry-academia relationships for mutual benefit. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING B.TECH IN COMPUTER SCIENCE AND ENGINEERING PROGRAM EDUCATIONAL OBJECTIVES Apply computer science theory blended with mathematics and engineering to model PEO1 computing systems. Design, implement, test and maintain software systems based on requirement PEO2 specifications. Communicate effectively with team members, engage in applying technologies and PEO3 lead teams in industry. Assess the computing systems from the view point of quality, security, privacy, cost, PEO4 utility, etiquette and ethics.
    [Show full text]
  • Developing Verified Programs with Dafny
    Developing Verified Programs with Dafny K. Rustan M. Leino Microsoft Research, Redmond, WA, USA [email protected] Abstract—Dafny is a programming language and program method Sort(a: int, b: int, c: int) returns (x: int, y: int, z: int) verifier. The language includes specification constructs and the ensures x ≤ y ≤ z ^ multiset{a, b, c} = multiset{x, y, z}; verifier checks that the program lives up to its specifications. { These tutorial notes give some Dafny programs used as examples x, y, z := a, b, c; if z < y { y, z := z, y; } in the tutorial. if y < x { x, y := y, x; } if z < y { y, z := z, y; } I. INTRODUCTION } Reasoning about programs is a fundamental skill that every software engineer needs. Dafny is a programming language Fig. 0. Example that shows some basic features of Dafny. The method’s specification says that x,y,z is a sorted version of a,b,c, and the verifier designed with verification in mind [0]. It can be used to automatically checks the code to satisfy this specification. develop provably correct code (e.g., [1]). Because its state-of- the-art program verifier is easy to run—it runs automatically method TriangleNumber(N: int) returns (t: int) 0 in the background in the integrated development environment requires 0 ≤ N; and it runs at the click of a button in the web version1—Dafny ensures t = N*(N+1) / 2; { also stands out as a tool that through its analysis feedback t := 0; helps teach reasoning about programs. This tutorial shows how var n := 0; while n < N to use Dafny, and these tutorial notes show some example invariant 0 ≤ n ≤ N ^ t = n*(n+1) / 2; programs that highlight major features of Dafny.
    [Show full text]
  • Dafny Quick Reference* J
    DAFNY QUICK REFERENCE* J. Pascoal Faria *NON-EXHAUSTIVE FEUP, MIEIC, MFES, 2019/20 INDEX What is Dafny Type system Program Specification & .Programming styles .Basic types organization verification constructs .Programs & .Collections .Methods .Basic: specifications .Sets .Functions & .requires and ensures .Verifier, compiler & .Sequences predicates .reads, modifies & old VSCode extension .Multisets .Expressions .invariant & decreases .Maps .Statements .Advanced: .Tuples .Modules .assert & assume .Inductive data .ghost variables & types methods .lemmas .Arrays .attributes .Classes .Traits WHAT IS DAFNY? WHAT IS DAFNY? A powerful programming language & system from Microsoft Research, targeting the development of verified programs, and used in several real world projects requiring formal verification. Powerful programming language: Multi-paradigm: combines the functional, imperative and object-oriented styles Allows writing programs (implementations) and specifications (with several sorts of assertions & annotations) Powerful programming system: Verifier using Z3 Compiler to C# Extension for VSCode PROGRAMMING STYLES Functional .Immutable types (value types) .Side-effect free functions and predicates .… Best suited for writing specifications! Imperative (structured & object-oriented) .Statements .Methods .Modules .Classes .… Best suited for writing implementations! PROGRAMS (IMPLEMENTATIONS) & SPECIFICATIONS Formal specification of method pre- and post-conditions (method semantics). Formal specification of loop variant and invariant,
    [Show full text]
  • User Interaction in Deductive Interactive Program Verification
    User Interaction in Deductive Interactive Program Verification Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der KIT-Fakult¨atf¨urInformatik des Karlsruher Instituts f¨urTechnologie (KIT) genehmigte Dissertation von Sarah Caecilia Grebing aus Mannheim Tag der m¨undlichen Pr¨ufung: 07. Februar 2019 Erster Gutachter: Prof. Dr. Bernhard Beckert Zweiter Gutachter: Assoc. Prof. Dr. Andr´ePlatzer Contents Deutsche Zusammenfassung xv 1. Introduction1 1.1. Structure and Contribution of this Thesis . .2 1.1.1. Qualitative, Explorative User Studies . .3 1.1.2. Interaction Concept for Interactive Program Verification . .5 1.2. Previously Published Material . .6 I. Foundations for this Thesis9 2. Usability of Software Systems: Background and Methods 11 2.1. Human-Computer Interaction . 12 2.2. User-Centered Process . 12 2.3. Usability . 13 2.3.1. What is Usability? . 13 2.3.2. Usability Principles . 14 2.4. Interactions . 16 2.4.1. Models of Interaction . 16 2.4.2. Interaction Styles . 18 2.5. Task Analysis . 20 2.5.1. A brief Introduction to Sequence Models . 20 2.6. Evaluation Methods . 22 2.6.1. Questionnaires . 23 2.6.2. Interviews . 24 2.6.3. Focus Groups . 24 2.6.4. Preparation and Conduction of Focus Groups and Interviews . 25 3. Interactive Deductive Program Verification 29 3.1. Introduction . 29 3.2. Logical Calculi . 30 3.3. Specification of Java Programs with JML . 32 3.3.1. Method Contracts . 33 3.3.2. Loop Invariants . 34 3.3.3. Class Invariants . 36 3.3.4. The Purpose of Specifications . 36 3.4. A Brief Introduction to Java Dynamic Logic (JavaDL) .
    [Show full text]