Producing T Cells

Total Page:16

File Type:pdf, Size:1020Kb

Producing T Cells Lnk/Sh2b3 Controls the Production and Function of Dendritic Cells and Regulates the Induction of IFN- −γ Producing T Cells This information is current as Taizo Mori, Yukiko Iwasaki, Yoichi Seki, Masanori Iseki, of September 28, 2021. Hiroko Katayama, Kazuhiko Yamamoto, Kiyoshi Takatsu and Satoshi Takaki J Immunol published online 14 July 2014 http://www.jimmunol.org/content/early/2014/07/13/jimmun ol.1303243 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/07/14/jimmunol.130324 Material 3.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 14, 2014, doi:10.4049/jimmunol.1303243 The Journal of Immunology Lnk/Sh2b3 Controls the Production and Function of Dendritic Cells and Regulates the Induction of IFN-g–Producing T Cells Taizo Mori,*,1 Yukiko Iwasaki,*,†,1 Yoichi Seki,* Masanori Iseki,* Hiroko Katayama,* Kazuhiko Yamamoto,† Kiyoshi Takatsu,‡,x and Satoshi Takaki* Dendritic cells (DCs) are proficient APCs that play crucial roles in the immune responses to various Ags and pathogens and polarize Th cell immune responses. Lnk/SH2B adaptor protein 3 (Sh2b3) is an intracellular adaptor protein that regulates B lymphopoiesis, megakaryopoiesis, and expansion of hematopoietic stem cells by constraining cytokine signals. Recent genome-wide association studies have revealed a link between polymorphism in this adaptor protein and autoimmune diseases, including type 1 diabetes and celiac disease. We found that Lnk/Sh2b3 was also expressed in DCs and investigated its role in the production and function of DC Downloaded from lineage cells. In Lnk2/2 mice, DC numbers were increased in the spleen and lymph nodes, and growth responses of bone marrow– derived DCs to GM-CSF were augmented. Mature DCs from Lnk2/2 mice were hypersensitive and showed enhanced responses to IL-15 and GM-CSF. Compared to normal DCs, Lnk2/2 DCs had enhanced abilities to support the differentiation of IFN-g– producing Th1 cells from naive CD4+ T cells. This was due to their elevated expression of IL-12Rb1 and increased production of IFN-g. Lnk2/2 DCs supported the appearance of IFN-g–producing T cells even under conditions in which normal DCs supported induction of regulatory T cells. These results indicated that Lnk/Sh2b3 plays a regulatory role in the expansion of DCs and might http://www.jimmunol.org/ influence inflammatory immune responses in peripheral lymphoid tissues. The Journal of Immunology, 2014, 193: 000–000. endritic cells (DCs), which were originally named after of c-Kit/CD117 (2, 3), as well as common DC precursors (CDPs) their characteristic morphology, are sparsely but widely defined with a Lin2IL-7Ra2c-KitintFlt3/CD135+ M-CSFR/CD115+ D distributed cells of hematopoietic origin. They are pro- immunophenotype (4), have been shown to be DC progenitors in BM. fessional APCs and have crucial functions in the initiation of innate Both cell types are components of granulocyte–macrophage progen- and adaptive immunity in infection and inflammation and in the itors (GMPs). Commitment to the DC lineage occurs at the MDP induction of tolerance under steady-state conditions (1). The stage, and MDPs give rise to monocytes and to CDPs that exclusively by guest on September 28, 2021 number of DCs in the periphery is maintained by the continuous produce plasmacytoid DCs (pDCs) and pre-DCs, a circulating DC- generation of precursors in the bone marrow (BM) as well as by restricted progenitor that gives rise exclusively to conventional DCs local expansion of resident DCs and their apoptosis. Macrophage (cDCs) in both lymphoid and nonlymphoid tissue DCs (2–10). DC progenitors (MDPs), originally defined as lineage (Lin)2 cells Lnk, recently designated as SH2B adaptor protein 3 (Sh2b3), expressing a CX3CR1 promotor–driven GFP transgene and low levels belongs to an adaptor protein family that includes SH2-B (Sh2b1) and APS (Sh2b2). They share the presence of a homologous N- terminal domain with putative proline-rich protein interaction *Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan; †Department of Allergy and Rheuma- motifs, followed by the pleckstrin homology and Src homology 2 tology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; (SH2) domains and a conserved C-terminal tyrosine phosphory- ‡ Department of Immunobiology and Pharmacological Genetics, Graduate School of lation site. Lnk/Sh2b3 negatively regulates cytokine and growth Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 2/2 930-0194, Japan; and xPrefectural Institute for Pharmaceutical Research, Toyama factor signals involved in lymphohematopoiesis (11–14). Lnk 939-0363, Japan mice are characterized by overproduction of B cells and expansion 1T.M. and Y.I. contributed equally to this work. of hematopoietic stem cells (HSCs), as well as overactive mega- Received for publication December 9, 2013. Accepted for publication June 5, 2014. karyocytopoiesis and erythropoiesis, owing to the absence of This work was supported by Japan Society for the Promotion of Science Grants-in- negative regulation of stem cell factor, thrombopoietin, and 2 2 Aid for Scientific Research 22590446 and 25293097 (to S.T.), as well as by National erythropoietin signaling pathways (13–19). Analysis of Lnk / Center for Global Health and Medicine Grants 22-114, 22-205, and 25-107 (to S.T.). HSCs has shown that Lnk/Sh2b3 controls thrombopoietin-induced Address correspondence and reprint requests to Dr. Satoshi Takaki, Department of self-renewal, quiescence, and proliferation of HSCs (20, 21). Ac- Immune Regulation, Research Institute, National Center for Global Health and 2/2 Medicine, 1-7-1 Konodai, Ichikawa, Chiba 272-8516, Japan. E-mail address: cordingly, aged Lnk mice manifest some characteristics of my- [email protected] eloproliferative disease (22). In humans, mutations in the LNK/ The online version of this article contains supplemental material. SH2B3 gene have been found in a portion of myeloproliferative Abbreviations used in this article: ALDH, aldehyde dehydrogenase; BM, bone mar- disease patients (23–25). Additionally, Lnk/Sh2b3 regulates cyto- row; BMDC, bone marrow–derived DC; CD, celiac disease; cDC, conventional DC; skeletal rearrangement. Lnk2/2 megakaryocytes cultivated on CDP, common DC precursor; CMP, common myeloid progenitor; DC, dendritic cell; GMP, granulocyte–macrophage progenitor; HSC, hematopoietic stem cell; Lin, lin- VCAM-1 (a ligand for a4b1 and a4b7 integrins) showed altered cell eage; LN, lymph node; MDP, macrophage DC progenitor; MHC-II, MHC class II; shapes and proplatelet formation compared with wild-type (WT) MLN, mesenteric lymph node; pDC, plasmacytoid DC; RA, retinoic acid; SH2, Src cells (19). We have reported that Lnk/Sh2b3 promotes stabilization homology 2; Sh2b3, SH2B adaptor protein 3; Treg, regulatory T cell; WT, wild-type. of the developed thrombus, mainly through integrin aIIbb3-medi- Copyright Ó 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00 ated actin cytoskeletal reorganization (26). www.jimmunol.org/cgi/doi/10.4049/jimmunol.1303243 2 Lnk/Sh2b3 REGULATES DC FUNCTION Recent genome-wide association studies have demonstrated the Flow cytometry presence of a nonsynonymous single nucleotide polymorphism in Cells were incubated with anti–CD16/32 mAb (2.4G2, BD Biosciences) to LNK/SH2B3 as a risk factor for several autoimmune diseases, prevent nonspecific binding of Abs via FcR interactions without CD16/32 including type 1 diabetes and celiac disease (CD) (27–30). CD staining. In general, 1 3 106 cells were incubated on ice for 20 min with is a common intestinal inflammatory disorder resulting from FITC-, PE-, PE-Cy7–, allophycocyanin-, allophycocyanin-Cy7–, and intolerance to gluten (31), and increased production of IL-15 biotin-conjugated mAbs for cell surface staining. The following conju- gated Abs were purchased from eBioscience (San Diego, CA): CD3ε (145- by intestinal epithelial cells has been reported in CD patients. 2C11), CD11b (M1/70), CD16/32 (93) , CD19 (1D3), CD34 (RAM34), Activation by IL-15 and the killing of intestinal epithelial cells CD40 (1C10), CD86 (GL1), CD115 (M-CSFR) (AFS98), CD103 (2E8), expressing stress- and inflammation-induced nonclassical MHC CD127 (IL-7Ra) (A7R34), Foxp3 (FJK-165), MHC class II (MHC-II; M5/ class I molecules has been suggested as an etiologic event (32). 114.15.2), NK1.1 (PK136), Sca-1 (D7), SIRP-1a (PB4), and TER119 (TER119). The following conjugated Abs were purchased from Bio- The functions of Lnk/Sh2b3 that enhance the risk for autoimmune Legend: B220 (RA3-6B2), CCR9 (242503), CD4 (RM4-5), CD8a (53- inflammation, however, have been largely unrevealed. 6.7), CD44 (IM7), CD45.1 (A20), CD45.2 (104), CD62L (MEL14), DCs show high motility and morphological diversity. They CD207 (4C7), Gr-1 (RB6-8C5), IFN-g (XMG1.2), Ly-6C (HK1.4), capture Ags in the periphery and migrate to lymph nodes (LNs). PDCA-1 (927), and Siglec-H (551). The following conjugated Abs were They form protruding dendrites and extending lamellipodia in purchased from BD Biosciences: c-Kit (2B8), CD11c (HL3), CD135 (Flt3), CD212 (IL-12Rb1) (114), phospho-STAT4 (38/p-Stat4), phospho- response to various stimuli. Considering those characteristics of STAT5 (47/Stat5 [pY694]), and I-Ab (AF6-120.1).
Recommended publications
  • Comprehensive Array CGH of Normal Karyotype Myelodysplastic
    Leukemia (2011) 25, 387–399 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu LEADING ARTICLE Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance A Thiel1, M Beier1, D Ingenhag1, K Servan1, M Hein1, V Moeller1, B Betz1, B Hildebrandt1, C Evers1,3, U Germing2 and B Royer-Pokora1 1Institute of Human Genetics and Anthropology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany and 2Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Duesseldorf, Germany About 40% of patients with myelodysplastic syndromes (MDSs) 40–50% of MDS cases have a normal karyotype. MDS patients present with a normal karyotype, and they are facing different with a normal karyotype and low-risk clinical parameters are courses of disease. To advance the biological understanding often assigned into the IPSS low and intermediate-1 risk groups. and to find molecular prognostic markers, we performed a high- resolution oligonucleotide array study of 107 MDS patients In the absence of genetic or biological markers, prognostic (French American British) with a normal karyotype and clinical stratification of these patients is difficult. To better prognosticate follow-up through the Duesseldorf MDS registry. Recurrent these patients, new parameters to identify patients at higher risk hidden deletions overlapping with known cytogenetic aberra- are urgently needed. With the more recently introduced modern tions or sites of known tumor-associated genes were identi- technologies of whole-genome-wide surveys of genetic aberra- fied in 4q24 (TET2, 2x), 5q31.2 (2x), 7q22.1 (3x) and 21q22.12 tions, it is hoped that more insights into the biology of disease (RUNX1, 2x).
    [Show full text]
  • Germline Risk of Clonal Haematopoiesis
    REVIEWS Germline risk of clonal haematopoiesis Alexander J. Silver 1,2, Alexander G. Bick 1,3,4,5 and Michael R. Savona 1,2,4,5 ✉ Abstract | Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing. Haematopoietic stem cells Haematopoiesis, the process by which blood cells are gen- First, advances in next-generation sequencing technolo- (HSCs). Cells that are erated, begins in embryogenesis and continues through- gies have enabled the identification of mutations with responsible for the creation of out an individual’s lifespan1. Haematopoietic stem cells high resolution (that is, single base-pair changes) even all blood cells in the human (HSCs) are responsible for the creation of all mature when these lesions are present in just a fraction of sampled body and are multipotent in blood cells, including red blood cells, platelets, and the cells.
    [Show full text]
  • Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance
    Diabetes Page 2 of 46 1 Crucial Role of the SH2B1 PH Domain for the Control of 2 Energy Balance 3 4 Anabel Floresa, Lawrence S. Argetsingerb+, Lukas K. J. Stadlerc+, Alvaro E. Malagab, Paul B. 5 Vanderb, Lauren C. DeSantisb, Ray M. Joea,b, Joel M. Clineb, Julia M. Keoghc, Elana Henningc, 6 Ines Barrosod, Edson Mendes de Oliveirac, Gowri Chandrashekarb, Erik S. Clutterb, Yixin Hub, 7 Jeanne Stuckeyf, I. Sadaf Farooqic, Martin G. Myers Jr. a,b,e, Christin Carter-Sua,b,e, g * 8 aCell and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA 9 bDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA 10 cUniversity of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, 11 Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK 12 dMRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, 13 Cambridge, UK 14 eDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA 15 fLife Sciences Institute and Departments of Biological Chemistry and Biophysics, University of Michigan, Ann Arbor, 16 MI 48109, USA 17 +Authors contributed equally to this work 18 gLead contact 19 *Correspondence: [email protected] 20 21 Running title: Role of SH2B1 PH Domain in Energy Balance 22 23 24 25 26 27 28 1 Diabetes Publish Ahead of Print, published online August 22, 2019 Page 3 of 46 Diabetes 29 30 Abstract 31 Disruption of the adaptor protein SH2B1 is associated with severe obesity, insulin resistance and 32 neurobehavioral abnormalities in mice and humans.
    [Show full text]
  • Clonal Hematopoietic Mutations Linked to Platelet Traits and the Risk Of
    REVIEW ARTICLE Clonal hematopoietic mutations linked to Ferrata Storti Foundation platelet traits and the risk of thrombosis or bleeding Alicia Veninga, 1,* Ilaria De Simone, 1,* Johan W.M. Heemskerk, 1 Hugo ten Cate, 1,2,3 and Paola E.J. van der Meijden 1,2 1Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht; 2Thrombosis Expertise Center, Heart and Vascular Haematologica 2020 Center, Maastricht University Medical Center, Maastricht and 3Department of Internal Volume 105(8):2020-2031 Medicine, Maastricht University Medical Center, Maastricht, the Netherlands *AV and IDS contributed equally as co-first authors. ABSTRACT latelets are key elements in thrombosis, particularly in atherosclero - sis-associated arterial thrombosis (atherothrombosis), and hemosta - Psis. Megakaryocytes in the bone marrow, differentiated from hematopoietic stem cells are generally considered as a uniform source of platelets. However, recent insights into the causes of malignancies, includ - ing essential thrombocytosis, indicate that not only inherited but also somatic mutations in hematopoietic cells are linked to quantitative or qualitative platelet abnormalities. In particular cases, these form the basis of thrombo-hemorrhagic complications regularly observed in patient groups. This has led to the concept of clonal hematopoiesis of indetermi - nate potential (CHIP), defined as somatic mutations caused by clonal expansion of mutant hematopoietic cells without evident disease. This concept also provides clues regarding the importance of platelet function Correspondence: in relation to cardiovascular disease. In this summative review, we present an overview of genes associated with clonal hematopoiesis and altered P.E.J. VAN DER MEIJDEN platelet production and/or functionality, like mutations in JAK2 . We con - [email protected] sider how reported CHIP genes can influence the risk of cardiovascular disease, by exploring the consequences for platelet function related to Received: January 31, 2020.
    [Show full text]
  • Diagnostic Workflow for Hereditary Erythrocytosis and Thrombocytosis
    Diagnostic workflow for hereditary erythrocytosis and thrombocytosis McMullin, M. F. (2019). Diagnostic workflow for hereditary erythrocytosis and thrombocytosis. Hematology (United States), 2019(1), 391-396. https://doi.org/10.1182/hematology.2019000047 Published in: Hematology (United States) Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 American Society of Hematology. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:29. Sep. 2021 Diagnostic workflow for hereditary erythrocytosis and thrombocytosis Mary Frances McMullin, Centre for Medical Education, Queen’s University Belfast, Belfast BT9 7AB, N. Ireland. Email [email protected] Abstract In the patient presenting with an elevated blood count who does not have an acquired clonal disorder causing a myeloproliferative neoplasm, hereditary erythrocytosis or hereditary thrombocytosis needs to be considered as a possible explanation.
    [Show full text]
  • Insight Into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and Its Rare Obesity-Associated Variants
    Insight into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and its Rare Obesity-Associated Variants By Ray Morris Joe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2017 Doctoral Committee: Professor Christin Carter-Su, Chair Professor Ken Inoki Professor Benjamin L. Margolis Professor Donna M. Martin Professor Martin G. Myers © Ray Morris Joe ORCID: 0000-0001-7716-2874 [email protected] All rights reserved 2017 Acknowledgements I’d like to thank my mentor, Christin Carter-Su, for providing me a second opportunity and taking a chance on me after my leave of absence without hesitation. It is an honor to have a mentor guide me through the many challenges I have faced as a graduate student. She has taught me to find passion in my profession, and to strive to push through obstacles and find ways to reach my goals. In addition, she has given me insight to find a balance between work and life by giving me freedom to independently perform my research as well as stories on family and child-rearing. Throughout the many countless days and nights writing grants, manuscripts, and analyzing/interpreting data, it was wonderful to share our past cultural identities with one another. I look forward to having Christy as a mentor, colleague, and friend for all my future endeavors I have after I leave her laboratory. I want to thank my thesis committee, Ken Inoki, Ben Margolis, Donna Martin, and Martin Myers for the numerous insights for my scientific training.
    [Show full text]
  • Clonality Identified by Targeted Sequencing
    RESEARCH ARTICLE Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing Jee-Soo Lee1¤, Heewon Seo2,3, Kyongok Im4, Si Nae Park4, Sung-Min Kim4, Eun Kyoung Lee4, Jung-Ah Kim1, Joon-hee Lee1, Sunghoon Kwon5, Miyoung Kim6, Insong Koh7, Seungwoo Hwang8, Heung-Woo Park9, Hye-Ryun Kang9, Kyoung Soo Park9, Ju Han Kim2,3, Dong Soon Lee1,4* 1 Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea, 2 Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul a1111111111 National University College of Medicine, Seoul, Republic of Korea, 3 Division of Biomedical Informatics, a1111111111 Systems Biomedical Informatics National Core Research Center, Seoul National University College of a1111111111 Medicine, Seoul, Republic of Korea, 4 Cancer Research Institute, Seoul National University College of a1111111111 Medicine, Seoul, Republic of Korea, 5 Department of Electrical Engineering, Seoul National University, a1111111111 Seoul, Republic of Korea, 6 Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea, 7 Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea, 8 Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea, 9 Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea OPEN ACCESS ¤ Current address: Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea Citation: Lee J-S, Seo H, Im K, Park SN, Kim S-M, * [email protected] Lee EK, et al. (2017) Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing. PLoS ONE 12(10): e0185602.
    [Show full text]
  • Sex-Specific Association of SH2B3 and SMARCA4 Polymorphisms With
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 35), pp: 59397-59407 Research Paper Sex-specific association ofSH2B3 and SMARCA4 polymorphisms with coronary artery disease susceptibility Yuqiang Ji1,2,3,*, Yanbin Song1,2,4,*, Qingwen Wang5, Pengcheng Xu5, Zhao Zhao3, Xia Li3, Nan Wang3, Tianbo Jin1,2 and Chao Chen1,2 1Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi’an, Shaanxi 710069, China 2School of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China 3Department of Cardiovascular Medicine, First Hospital of Xi’an, Xi’an 710002, China 4Department of Cardiovascular Medicine, Affiliated Hospital Yan’an University, Yan’an 716000, China 5Department of Hand Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei 061001, China *These authors have contributed equally to this work Correspondence to: Tianbo Jin, email: [email protected] Chao Chen, email: [email protected] Keywords: coronary artery disease, SH2B3, SMARCA4, single nucleotide polymorphism, gene Received: February 06, 2017 Accepted: June 03, 2017 Published: July 31, 2017 Copyright: Ji et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT To determine whether sex differences affect the association between genetic polymorphisms and coronary artery disease (CAD) in the Chinese Han population, we conducted a study comparing the frequency of SH2B3 and SMARCA4 variants in 456 CAD patients (291 men, 165 women) and 685 age-matched controls (385 men, 300 women).
    [Show full text]
  • Characterization of Drosophila Lnk an Adaptor Protein Involved in Growth Control
    Research Collection Doctoral Thesis Characterization of Drosophila Lnk an adaptor protein involved in growth control Author(s): Werz, Christian Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-006073429 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 18640 Characterization of Drosophila Lnk – An Adaptor protein involved in growth control ABHANDLUNG Zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von CHRISTIAN WERZ Dipl. Biol. Geboren am 13.02.1977 von Neckarsulm, Deutschland Angenommen auf Antrag von Prof. Dr. Ernst Hafen Prof. Dr. Konrad Basler Prof. Dr. Markus Affolter Zürich 2009 Table of Contents Table of Contents Summary: .................................................................................................................. 4 Zusammenfassung: .................................................................................................. 5 Introduction: ............................................................................................................. 7 The fundamental process of growth control ............................................................ 7 The Insulin/IGF and TOR pathway.......................................................................... 9 Signaling downstream of the receptor................................................................... 11 Insulin
    [Show full text]
  • Epigenetic Age Prediction in Semen – Marker Selection and Model Development
    www.aging-us.com AGING 2021, Vol. 13, No.15 Research Paper Epigenetic age prediction in semen – marker selection and model development Aleksandra Pisarek1, Ewelina Pośpiech1, Antonia Heidegger2, Catarina Xavier2, Anna Papież3, Danuta Piniewska-Róg4, Vivian Kalamara5, Ramya Potabattula6, Michał Bochenek1, Marta Sikora-Polaczek7, Aneta Macur8, Anna Woźniak9, Jarosław Janeczko8, Christopher Phillips10, Thomas Haaf6, Joanna Polaoska3, Walther Parson2,11, Manfred Kayser5, Wojciech Branicki1,9 on behalf of the VISAGE Consortium 1Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland 2Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria 3Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland 4Department of Legal Medicine, Medical College, Krakow, Poland 5Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands 6Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany 7The Fertility Partnership Macierzynstwo, Krakow, Poland 8PARENS Fertility Centre, Krakow, Poland 9Central Forensic Laboratory of the Police, Warsaw, Poland 10Department of Legal Medicine, Santiago de Compostela, Spain 11Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA Correspondence to: Wojciech Branicki; email: [email protected] Keywords: semen, epigenetic age, DNA methylation, amplicon bisulfite sequencing, epigenetic age estimation Received: March 16, 2021 Accepted: July 17, 2021 Published: August 10, 2021 Copyright: © 2021 Pisarek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice.
    [Show full text]
  • A Graph-Theoretic Approach to Model Genomic Data and Identify Biological Modules Asscociated with Cancer Outcomes
    A Graph-Theoretic Approach to Model Genomic Data and Identify Biological Modules Asscociated with Cancer Outcomes Deanna Petrochilos A dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Neil Abernethy, Chair John Gennari, Ali Shojaie Program Authorized to Offer Degree: Biomedical Informatics and Health Education UMI Number: 3588836 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3588836 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ©Copyright 2013 Deanna Petrochilos University of Washington Abstract Using Graph-Based Methods to Integrate and Analyze Cancer Genomic Data Deanna Petrochilos Chair of the Supervisory Committee: Assistant Professor Neil Abernethy Biomedical Informatics and Health Education Studies of the genetic basis of complex disease present statistical and methodological challenges in the discovery of reliable and high-confidence genes that reveal biological phenomena underlying the etiology of disease or gene signatures prognostic of disease outcomes. This dissertation examines the capacity of graph-theoretical methods to model and analyze genomic information and thus facilitate using prior knowledge to create a more discrete and functionally relevant feature space.
    [Show full text]
  • Haematological Malignancies
    Thoennissen_relayout_EU Onc & Haem 08/02/2011 13:13 Page 59 Haematological Malignancies Leukaemic Transformation of Philadelphia-chromosome-negative Myeloproliferative Neoplasms – A Review of the Molecular Background Nils H Thoennissen1 and H Phillip Koeffler2 1. Post-doctoral Researcher, Division of Hematology/Oncology, Cedars-Sinai Medical Center; 2. Director, Division of Hematology/Oncology, Cedars-Sinai Medical Center, and Deputy Director of Cancer Research, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore Abstract Philadelphia-chromosome-negative myeloproliferative neoplasms (MPNs), including polycythaemia vera (PV), primary myelofibrosis (PMF) and essential thrombocythaemia (ET), are clonal haematopoietic stem cell disorders characterised by proliferation of one or more myeloid cell lineages. They are closely associated with the JAK2V617F mutation, whose detection is used as a clonal marker in the differential diagnosis of MPN. Despite recent improvements in the molecular diagnosis and therapeutic regimen of these chronic disorders, haematological evolution to blast phase remains a major cause of long-term mortality. The mechanism of MPN transformation is still a matter of some controversy because of insufficient insights into the underlying molecular pathogenesis. The purpose of this article is to summarise the increasing data concerning the mechanism of leukaemic evolution of patients diagnosed with chronic MPN. Chromosomal abnormalities and genes that have been shown to play a potential
    [Show full text]