Highly Diversified Shrew Hepatitis B Viruses Corroborate Ancient Origins and Divergent Infection Patterns of Mammalian Hepadnaviruses

Total Page:16

File Type:pdf, Size:1020Kb

Highly Diversified Shrew Hepatitis B Viruses Corroborate Ancient Origins and Divergent Infection Patterns of Mammalian Hepadnaviruses Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses Andrea Raschea,b, Felix Lehmannc, Alexander Königc, Nora Goldmannc, Victor M. Cormana,b, Andres Moreira-Sotoa, Andreas Geipelc, Debby van Rield, Yulia A. Vakulenkoe, Anna-Lena Sandera, Hauke Niekampc, Ramona Kepperc,f, Mathias Schlegelg, Chantal Akoua-Koffih, Breno F. C. D. Souzai, Foday Sahrj, Ayodeji Olayemik, Vanessa Schulzeg, Rasa Petraityte-Burneikienel, Andris Kazaksm, Kira A. A. T. Lowjagan, Joachim Geyern, Thijs Kuikend, Christian Drostena,b, Alexander N. Lukasheve, Elisabeth Fichet-Calveto, Rainer G. Ulrichg, Dieter Glebec,f,1,2, and Jan Felix Drexlera,b,e,1,2 aInstitute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; bGerman Centre for Infection Research, Partner Site Charité, 10117 Berlin, Germany; cInstitute of Medical Virology, National Reference Center for Hepatitis B and D Viruses, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; dDepartment of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; eTropical and Vector-Borne Diseases, Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435 Moscow, Russia; fGerman Centre for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany; gInstitute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald–Insel Riems, Germany; hCentre de Recherche pour le Développement, Alassane Ouattara University of Bouaké, BP V1801 Bouaké, Côte d’Ivoire; iInfectious Diseases Research Laboratory, Federal University of Bahia, University Hospital Prof. Edgard Santos, 40.110-060 Salvador, Brazil; jCollege of Medicine and Allied Health Sciences, University of Sierra Leone, FQQ6+3M Freetown, Sierra Leone; kNatural History Museum, Obafemi Awolowo University, GG8H+JC Ile-Ife, Nigeria; lInstitute of Biotechnology, Vilnius University Life Sciences Center Institute of Biotechnology, LT-10257 Vilnius, Lithuania; mLatvian Biomedical Research and Study Centre, University of Latvia, LV-1067 Riga, Latvia; nInstitute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; and oDepartment of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany Edited by Ding-Shinn Chen, National Taiwan University College of Medicine, Taipei, Taiwan, and approved July 1, 2019 (received for review May 13, 2019) Shrews, insectivorous small mammals, pertain to an ancient mamma- Hepadnaviruses are ancient pathogens, likely infecting verte- MICROBIOLOGY lian order. We screened 693 European and African shrews for hepatitis brates for over 200 million years (3). Placental mammals evolved B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. ∼99 million years ago (mya) and form 2 major clades termed Shrews host HBVs at low prevalence (2.5%) across a broad geographic Laurasiatheria and Euarchontoglires (4). The known laurasiatherian and host range. The phylogenetically divergent shrew HBVs comprise HBV hosts belong to several species within the orders Chiroptera separate species termed crowned shrew HBV (CSHBV) and musk (bats) and to one species each within the orders Carnivora (cat) and shrew HBV (MSHBV), each containing distinct genotypes. Recombina- Artiodactyla (duiker). HBV hosts within the Euarchontoglires include tion events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of Significance mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia- derived primary hepatocytes were resistant to hepatitis D viruses Hepatitis B viruses (HBVs) have existed for millions of years. pseudotyped with CSHBV surface proteins. Functional characterization We describe divergent HBV species in shrews, which are an- of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), cient insectivorous mammals. The shrew viruses corroborated CSHBV/MSHBV surface peptide binding patterns, and infection exper- ancient origins of mammalian HBV and showed mutations in iments revealed lack of Ntcp-mediated entry of shrew HBV. Contrast- genomic domains required for production of the hepatitis B e ingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs antigen, crucial for vertical transmission and chronicity of HBV universally showed mutations in their genomic preCore domains in humans. Shrew HBV infection patterns showed important impeding hepatitis B e antigen (HBeAg) production and resembling similarities with human HBV, and shrews might be susceptible those observed in HBeAg-negative human HBV. Deep sequencing and to human HBV. In contrast, shrew HBVs could neither infect in situ hybridization suggest that HBeAg-negative shrew HBVs cause human cells nor use the canonical HBV receptor molecule for intense hepatotropic monoinfections and low within-host genomic cellular entry. The discovery and characterization of shrew heterogeneity. Geographical clustering and low MSHBV/CSHBV- HBVs allow conceptualizing urgently needed new animal models specific seroprevalence suggest focal transmission and high virulence relying on engineered shrew and human HBV homologs to of shrew HBVs. HBeAg negativity is thus an ancient HBV infection elucidate HBV pathogenesis. pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Author contributions: D.G. and J.F.D. designed research; A.R., F.L., A. König, N.G., V.M.C., Shrew infection models relying on CSHBV/MSHBV revertants and A.M.-S., A.G., D.v.R., Y.A.V., A.-L.S., H.N., R.K., M.S., C.A.-K., B.F.C.D.S., F.S., A.O., V.S., human HBV will allow comparative assessments of HBeAg-mediated K.A.A.T.L., E.F.-C., and R.G.U. performed research; R.P.-B., A. Kazaks, J.G., and C.D. con- HBV pathogenesis, entry, and species barriers. tributed new reagents/analytic tools; A.R., T.K., and A.N.L. analyzed data; and A.R., D.G., and J.F.D. wrote the paper. hepatitis B virus | viral evolution | zoonosis | shrew | E antigen The authors declare no conflict of interest. This article is a PNAS Direct Submission. he hepatitis B virus (HBV, genus Orthohepadnavirus)isa Published under the PNAS license. Tubiquitous pathogen that causes 887,000 deaths annually, Data deposition: Sequence data have been submitted to GenBank, https://www.ncbi.nlm. – – predominantly due to cirrhosis and hepatocellular carcinoma after nih.gov/genbank (accession nos. MK345460 MK345476 and MN170823 MN170825). 1 chronic hepatitis B (CHB) (1). Distantly related hepadnaviruses D.G. and J.F.D. contributed equally to this work. 2To whom correspondence may be addressed. Email: [email protected]. were identified recently in animals other than humans and apes de or [email protected]. (1). The newly discovered animal viruses revealed that prototypic This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. properties of HBV such as envelopment (2) and presence of an X 1073/pnas.1908072116/-/DCSupplemental. gene (3) emerged de novo during orthohepadnavirus evolution. www.pnas.org/cgi/doi/10.1073/pnas.1908072116 PNAS Latest Articles | 1of6 Downloaded by guest on October 2, 2021 humans and several nonhuman primate species within the order (Fig. 1A) (16). To investigate shrews for HBV along their geo- Primates and 3 closely related species within the order Rodentia (ro- graphic dispersal history, we sampled 693 animals pertaining to the dents) (1, 5). Bats may play an important role for Orthohepadnavirus genera Sorex and Crocidura from Europe and Western Africa dur- evolution because they host a relatively higher genetic diversity ing 2004–2016 (SI Appendix,TableS1). Liver specimens were tested of orthohepadnaviruses than other mammals (1, 6). However, bats for HBV DNA using a broadly reactive and highly sensitive nested are not the oldest laurasiatherian order. Predating the rise of bats, the PCR assay (17). In total, 17 animals were PCR-positive, including 1 order Eulipotyphla emerged ∼80 mya (4). This order comprises small common shrew (Sorex araneus) and 12 crowned shrews (Sorex cor- insectivorous animals such as moles, hedgehogs, and shrews. After onatus) sampled in Germany during 2008–2009and4Africangiant decades at the periphery of the life sciences, diverse homologs of shrews (Crocidura olivieri) sampledinIvoryCoastin2004and1 major human viruses have been found in eulipotyphlan hosts, sug- large-headed shrew (Crocidura grandiceps) sampled in Sierra Leone gesting they may play an underestimated role in the evolution of in 2014. The detection rate in European shrews (3.7%, 95% con- – mammalian viruses (7–10). Very recently, a divergent hepadnavirus fidence interval [CI], 2.1 6.5) was not significantly higher than in – = sequence was detected in Chinese shrews (11). Shrews represent African shrews (1.4%, 95% CI, 0.5 3.2; Fisher exact, P 0.05). – about 90% of all eulipotyphlan species (12). Scarce virological data on While the overall detection rate was low at 2.5% (95% CI, 1.5 3.9), it did not differ significantly from bat HBV detection rates in nat- shrews are partly due to difficulties in sampling these solitary animals = that rapidly decay in traps due to their high metabolic rate (13). ural habitats (2.2%; Fisher exact, P 1.0) (18) and may thus be Because hepadnaviruses may coevolve with their hosts (14) representative of diverse HBV animal reservoirs.
Recommended publications
  • Species List
    Mozambique: Species List Birds Specie Seen Location Common Quail Harlequin Quail Blue Quail Helmeted Guineafowl Crested Guineafowl Fulvous Whistling-Duck White-faced Whistling-Duck White-backed Duck Egyptian Goose Spur-winged Goose Comb Duck African Pygmy-Goose Cape Teal African Black Duck Yellow-billed Duck Cape Shoveler Red-billed Duck Northern Pintail Hottentot Teal Southern Pochard Small Buttonquail Black-rumped Buttonquail Scaly-throated Honeyguide Greater Honeyguide Lesser Honeyguide Pallid Honeyguide Green-backed Honeyguide Wahlberg's Honeyguide Rufous-necked Wryneck Bennett's Woodpecker Reichenow's Woodpecker Golden-tailed Woodpecker Green-backed Woodpecker Cardinal Woodpecker Stierling's Woodpecker Bearded Woodpecker Olive Woodpecker White-eared Barbet Whyte's Barbet Green Barbet Green Tinkerbird Yellow-rumped Tinkerbird Yellow-fronted Tinkerbird Red-fronted Tinkerbird Pied Barbet Black-collared Barbet Brown-breasted Barbet Crested Barbet Red-billed Hornbill Southern Yellow-billed Hornbill Crowned Hornbill African Grey Hornbill Pale-billed Hornbill Trumpeter Hornbill Silvery-cheeked Hornbill Southern Ground-Hornbill Eurasian Hoopoe African Hoopoe Green Woodhoopoe Violet Woodhoopoe Common Scimitar-bill Narina Trogon Bar-tailed Trogon European Roller Lilac-breasted Roller Racket-tailed Roller Rufous-crowned Roller Broad-billed Roller Half-collared Kingfisher Malachite Kingfisher African Pygmy-Kingfisher Grey-headed Kingfisher Woodland Kingfisher Mangrove Kingfisher Brown-hooded Kingfisher Striped Kingfisher Giant Kingfisher Pied
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Species Examined.Xlsx 8:17 PM 5/31/2011
    8:17 PM 5/31/2011 Names Accepted Binomial Name, Family Page Binomial Name, Page Common Name as of 2011, as given in Sperber if different than in Sperber Monotremata 264 Duckbilled Platypus Ornithorhynchus anatinus 264 Marsupialia 266 Slender‐tailed Dunnart Sminthopsis murina 266 Kultarr Antechinomys laniger 268 Gray Four‐eyed Opossum Philander opossum Didelphys opossum 269 (or possibly Virginia Opossum) ( or Didelphis virginiana) Eastern Grey Kangaroo Macropus giganteus 269 Insectivora 272 Elephant Shrew Macroscelides sp. 272 Hedgehog Erinaceus europaeus 273 Eurasian Pygmy Shrew Sorex minutus 274 Eurasian Water Shrew Neomys fodiens 279 Pygmy White Toothed Suncus etruscus Pachyura etrusca 280 (or Etruscan ) Shrew Russian Desman Desmana moschata 280 Chiroptera 281 Greater Flying Fox Pteropus vampyrus Pteropus edulis 281 (Kalong, Kalang) Northern Bat Eptesicus nilssonii Pipistrellus nilssoni 283 Particoloured Bat Vespertilio murinus 285 Xenarthra 287 and Pholidota Armadillos, anteaters and pangolins: Review of the literature only Rodentia 288 European Rabbit Oryctolagus cuniculus 288 Eurasian Red Squirrel Sciurus vulgaris 293 Eurasian Beaver Castor fiber 294 Agile Kangaroo Rats Dipodomys agilis Perodipus agilis 296 Fresno Kangaroo Rat Dipodomys nitratoides exilis Dipodomys meriami exilis 297 Lesser Egyptian Jerboa Jaculus jaculus 298 Field (or Short‐tailed) Vole Microtus agrestis 299 Bank Vole Myodes glareolus Evotomys glareolus 303 European (or Northern) Water Arvicola terrestris 303 Vole Black Rat Rattus Rattus Epimys rattus 303 House Mouse
    [Show full text]
  • Hair Types in the Fur of the Pyrenean Desman (Insectivora: Talpidae
    Hair Types©Akademie in d. Wissenschaften the Fur Wien; downloadof the unter www.biologiezentrum.atPyrenean Desman (Galemys pyrenaicus) GEOFFROY, 1811 (Insectivora: Talpidae: Desmaninae)* B y W a l t e r P o d u s c h k a & Be r n a r d R ic h a r d Mit 7 Figuren (Vorgelegt in der Sitzung der mathem.-naturw. Klasse am 14. März 1985 durch das k. M. Fried rich Sc h a l l e r ) Introduction For more than 25 years, American Mink (Mustela vison SCHREBER, 1877) escaped from a fur farm near El Espinar (Sierra Guadarrama, in northern Central Spain). They quickly spread and are suspected of being the main culprits in the extermination of the local Desman population. However, since this sad fact may also be due to water pollution, to "scientists” and unscrupulous lifetrapping or to the destruction of decidous forests along the riverbanks and their replacement with conifers, the M ink’s alleged guilt has to be substantiated through the finding of Desman bones and/or hair in their faeces. Unfortunately no such proof has yet been undertaken, due mostly to the lack of knowledge about the characteristics of the Desman’s fur. This paper is intended to amend this insufficiency. DAY (1966) published details of a method for the identification of mammalian hair in the faeces of predators, but he distinguished only two hair types: woolly hairs and sharply bent guard hairs. Unfortunately, his general remarks about the lack of a clear distinction between these two types of guard hair and “fine” (= woolly) hairs in the insectivores are incorrect.
    [Show full text]
  • Zoologisches Forschungsinstitut Und Museum Alexander Koenig, Bonn
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2001-2003 Band/Volume: 50 Autor(en)/Author(s): Hutterer Rainer Artikel/Article: Two replacement names and a note on the author of the shrew family Soricidae (Mammalia) 369-370 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. Bd. 50 H. 4 S. 369-370 Bonn, Januar 2003 Two replacement names and a note on the author of the shrew family Soricidae (Mammalia) Rainer Hutterer In the course of long-term revisionary studies of the fossil and living taxa of the Soricidae G. Fischer, 1817 (Hutterer 1 995 ), and during work for a chapter of the new edition of the world checklist of mammals (Wilson & Reeder in prep.), a number of taxonomic and nomenclatural problems were encountered. These also include two cases of homonymy, which are discussed here and for which replacement names are proposed in accordance with article 60 of the code (ICZN 1999). 1. Replacement name for Stirtonia Gureev, 1979 The genus Limnoecus Stirton, 1930 currently includes two taxa, L. tricuspis Stirton, 1930 and L. niobrarensis Macdonald, 1947 (Harris 1998). James (1963) who compared the type specimens of both taxa concluded that L. niobrarensis was a synonym of L. tricuspis, a view not shared by Repenning (1967). Gureev (1979) concluded that both species were not closely related and he placed L. niobrarensis in a new genus Stirtonia. From the descriptions of both taxa given by Stirton ( 1 930), Macdonald ( 1 947) and James ( 1 963) I am inclined to concur with Gureev (1979).
    [Show full text]
  • Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,
    [Show full text]
  • Mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele
    NABU’s Follow-up BiodiversityAssessmentBiosphereEthiopia Reserve, Follow-up NABU’s Kafa the at NABU’s Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Small- and medium-sized mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele Table of Contents Small- and medium-sized mammals of the Kafa Biosphere Reserve 130 1. Introduction 132 2. Materials and methods 133 2.1 Study area 133 2.2 Sampling methods 133 2.3 Data analysis 133 3. Results and discussion 134 3.1 Soricomorpha 134 3.2 Rodentia 134 3.3 Records of mammal species other than Soricomorpha or Rodentia 140 4. Evaluation of survey results 143 5. Conclusions and recommendations for conservation and monitoring 143 6. Acknowledgements 143 7. References 144 8. Annex 147 8.1 Tables 147 8.2 Photos 152 NABU’s Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Small- and medium-sized mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele 130 SMALL AND MEDIUM-SIZED MAMMALS Highlights ´ Eight species of rodents and one species of Soricomorpha were found. ´ Five of the rodent species (Tachyoryctes sp.3 sensu (Sumbera et al., 2018)), Lophuromys chrysopus and L. brunneus, Mus (Nannomys) mahomet and Desmomys harringtoni) are Ethiopian endemics. ´ The Ethiopian White-footed Mouse (Stenocephalemys albipes) is nearly endemic; it also occurs in Eritrea. ´ Together with the Ethiopian Vlei Rat (Otomys fortior) and the African Marsh Rat (Dasymys griseifrons) that were collected only during the 2014 survey, seven endemic rodent species are known to occur in the Kafa region, which supports 12% of the known endemic species of the country.
    [Show full text]
  • The Behavior of Solenodon Paradoxus in Captivity with Comments on the Behavior of Other Insectivora
    The Behavior of Solenodon paradoxus in Captivity with Comments on the Behavior of Other Insectivora JOHN F. EISENBERG1 Department of Zoology, University of Maryland & EDWIN GOULD2 Department of Mental Hygiene, Laboratory of Comparative Behavior, Johns Hopkins University (Plates I & II) I. INTRODUCTION For comparative purposes the authors utilized Solenodon paradoxus, confined to the island the extensive collection of living tenrecs main- of Hispaniola, and S. cubanus, endemic to Cuba, tained by Dr. Gould at Johns Hopkins Uni- versity, and drew upon their previous behavioral comprise the sole living members of the family studies of insectivores, which have already been Solenodontidae. A full-grown specimen of S. published in part elsewhere (Eisenberg, 1964; paradoxus may weigh up to 1 kgm. and attain a Gould, 1964, 1965). head and body length of 300 mm. Although large size and primitive molar cusp pattern have led II. SPECIMENS AND MAINTENANCE taxonomists to include this genus with the tenrecs Four specimens of Solenodon paradoxus (one of Madagascar, further morphological studies male, three females) were purchased from a have led certain workers to conclude that Sol- dealer in the Dominican Republic. The male enodon is a primitive soricoid more closely allied (M) and one female (J) were immature and, to the shrews than to the zalambdadont tenrecs extrapolating from their weights (Mohr, 1936 (McDowell, 1958). II), were judged to be four and six months old, The behavior of S. paradoxus was reviewed respectively. The juveniles were studied as a by Dr. Erna Mohr (1936-38). Since her series of pair by Dr. Eisenberg. In addition, all four ani- papers, however, much more has been learned mals were employed in two-animal encounters concerning the behavior of not only the soleno- and were recorded during studies of vocal com- don but also the insectivores of the families munication.
    [Show full text]
  • Zhuding Qiu & Gerhard Storch Contents Introduction Extensive
    China Zhuding Qiu & Gerhard Storch Qiu, Z.D. & Storch, G. China. In: Hoek Ostende, L.W. van den, Doukas, C.S. & Reumer, J.W.F. (eds), The Fossil Record of the Eurasian Neogene Insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. Scripta Geologica Special Issue, 5: 37-50, Leiden, November 2005. Z. Qiu, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Academia Sinica, P.O. Box 643, Beijing 100044, China, ([email protected]); G. Storch, Forschungsinstitut Senckenberg, Senckenberg- Anlage 25, D-60325 Frankfurt am Main, Germany ([email protected]). Contents Introduction .............................................................................................................................................................. 37 Insectivore faunas in the Neogene of China ......................................................................................... 38 References .................................................................................................................................................................. 48 Introduction Extensive excavation activities by the Institute of Vertebrate Paleontology and Paleo- anthropology, Beijing (IVPP) over the last 20 years have increased our knowledge of the Neogene micromammals from China considerably. Yet, it is still rather fragmentary; we deal with a very vast country with a complex geological and faunal history and varied ecological conditions at all times. The fossil sites are not distributed evenly in time and space (Fig. 1), and among
    [Show full text]
  • Ecological and Faunal Complexes of Insectivorous Mammals of the Republic of Mordovia, Russia
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 7, July 2020 E-ISSN: 2085-4722 Pages: 3344-3349 DOI: 10.13057/biodiv/d210758 Short communication: Ecological and faunal complexes of insectivorous mammals of the Republic of Mordovia, Russia ALEXEY ANDREYCHEV♥ Department of Zoology, National Research Mordovia State University. Bolshevistskaya street, 68, Saransk 430005, Russia. Tel./fax.: +7-342-322637, email: [email protected] Manuscript received: 30 March 2020. Revision accepted: 27 June 2020. Abstract. Andreychev A. 2020. Short communication: Ecological and faunal complexes of insectivorous mammals of the Republic of Mordovia, Russia. Biodiversitas 21: 3344-3349. In this study, reports that the species composition and occurrence of species in geo- ecological districts are not the same. 12 insectivorous mammals species have been recorded in the territory of Mordovia. The largest number of species in the region belongs to those living in coniferous and broad-leaved forests (42%). In the second place in terms of representation are species widely distributed in several natural areas (33%). They are slightly inferior to the types of taiga fauna (25%). For each geo- ecological district, the features of the rodent fauna are given and rare species are identified. The forest-steppe region of Mordovia is compared in insectivorous mammals fauna with other regions of Russia with different typical faunal complexes. Keywords: Habitat, insectivorous mammals, population, Russia, species INTRODUCTION In this paper present updated information on the fauna
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Molecular Phylogenetics of Shrews (Mammalia: Soricidae) Reveal Timing of Transcontinental Colonizations
    Molecular Phylogenetics and Evolution 44 (2007) 126–137 www.elsevier.com/locate/ympev Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations Sylvain Dubey a,*, Nicolas Salamin a, Satoshi D. Ohdachi b, Patrick Barrie`re c, Peter Vogel a a Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland b Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan c Laboratoire Ecobio UMR 6553, CNRS, Universite´ de Rennes 1, Station Biologique, F-35380, Paimpont, France Received 4 July 2006; revised 8 November 2006; accepted 7 December 2006 Available online 19 December 2006 Abstract We sequenced 2167 base pairs (bp) of mitochondrial DNA cytochrome b and 16S, and 1390 bp of nuclear genes BRCA1 and ApoB in shrews taxa (Eulipotyphla, family Soricidae). The aim was to study the relationships at higher taxonomic levels within this family, and in particular the position of difficult clades such as Anourosorex and Myosorex. The data confirmed two monophyletic subfamilies, Soric- inae and Crocidurinae. In the former, the tribes Anourosoricini, Blarinini, Nectogalini, Notiosoricini, and Soricini were supported. The latter was formed by the tribes Myosoricini and Crocidurini. The genus Suncus appeared to be paraphyletic and included Sylvisorex.We further suggest a biogeographical hypothesis, which shows that North America was colonized by three independent lineages of Soricinae during middle Miocene. Our hypothesis is congruent with the first fossil records for these taxa. Using molecular dating, the first exchang- es between Africa and Eurasia occurred during the middle Miocene. The last one took place in the Late Miocene, with the dispersion of the genus Crocidura through the old world.
    [Show full text]