University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting PRECISE POLYMER END GROUPS, AQUEOUS POLYMERIZATIONS, AND MACROMOLECULAR NANO-AGGREGATES By CHARLES ADRIAN FIGG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Charles Adrian Figg To my family and my friends, old and new. ACKNOWLEDGMENTS First, I would like to thank my family. My mother instilled scientific curiosity early in my life and has been my biggest supporter. I am constantly inspired by her resilience and ambition. I appreciate my sister as one of my best friends and for always pushing me to catch up with her successes, and my father and step-father for being beacons of reason and mindfulness. I am grateful to my grandpa, Charles Figg, and my grandmother, Juanita Figg, for teaching me the importance of civil duty and teaching. They fought through adversity to desegregate the public school system and ensure every child in central New Jersey got the education they deserved. Their persistence and unyielding belief in the pursuit and realization of educational goals has guided me though my academic career. I would like to thank Brent Sumerlin for being the mentor I desired and needed. He gave me the freedom to discover my research voice, make mistakes, and learn from my mistakes, while always being insightful and guiding. Brent has taught me not only what it means to be a successful researcher, but a good community member and a patient leader. As I transition from a student to a colleague, I could not be more excited to see what our future collaborations will bring. I also would like to thank my committee, Prof. Daniel A Savin, Prof. Ronald K. Castellano, Prof. Stephen A. Miller, and Prof. Blanka Sharma, for their support during my graduate career. Next, I would like to thank my past academic mentors. I began my science career taking readings on the radioactivity of a parking lot for Dr. Ernst Esch at Los Alamos National Lab. He showed unyielding support of my interests, regardless of if they aligned with his. Prof. Bert Meijer for telling me “it does not matter if my group does 4 what you are interested in, pursue what you want, and I will support you,” and letting me research with Prof. Patricia Dankers because of my interest in biomaterials. Prof. Craig Hawker for letting me join his lab, supporting me whenever I needed life advice, and having me work for one of the most influential mentors I have had, Prof. Brett Fors. Brett taught me the virtue in working hard to achieve and discover and the virtue of investing in the success of others. Prof. Cyrille Boyer for letting me have an Aussie winter holiday in his lab to learn PET-RAFT. Cyrille’s ambition and support for his students have further confirmed my career goals, while his support for me has endured far beyond the ten weeks I worked for him. I could not have done this without the support of my friends. I thank my friends I have known my whole life, Brett, Michelle, and Ariana, for being there to commiserate about our educational goals, especially as we all pursue advanced degrees. I thank my college friends, specifically Michael, Trevor, John, and Ryan, for always planning a Vegas or Napa trip when I needed it. My stammtisch group Nick, Kyle and Georg for the monthly escape of graduate life into the dungeon of Hogan’s. I am grateful to the members of the Sumerlin Group, past and present, for the constant pillar of support and creativity. Specifically, I would like to thank the people I have collaborated with or who have provided immense assistance in my research: Nick, Tomo, Georg, Megan, Jacob, Becky, Soma, Jimmy, John, and Bryan, I would also like to thank my many collaborators for their assistance in completing our research goals: Prof. Daniel Savin, Prof. Ronald Castellano, Prof. Cyrille Boyer, Prof. Zesheng An, Prof. Nathan Gianneschi, Prof. David Haddleton, Dr. Alexandre Simula, Kalkidan Gebre, Dr. Kyle Bentz, Dr. Sivaprakash Shanmugam, Dr. Ashton Bartley, and Molly Touve. 5 Finally, I would like to thank Heather Drew. She inspires me every day, and I could not imagine anyone else to chase dreams with. 6 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...................................................................................................... 4 LIST OF TABLES .............................................................................................................. 12 LIST OF FIGURES ............................................................................................................ 13 LIST OF ABBREVIATIONS ............................................................................................... 17 ABSTRACT ........................................................................................................................ 20 CHAPTER 1 BACKGROUND .......................................................................................................... 22 1.1 Precise Bond Formation ....................................................................................... 23 1.2 Precise Polymer Synthesis ................................................................................... 23 1.2.1 Catalyst-Free RAFT Photopolymerizations ................................................ 24 1.2.2 Externally-Initiated RAFT Photopolymerizations ....................................... 26 1.2.3 Photoinduced Electron/Energy Transfer (PET) RAFT Polymerizations .... 28 1.3 Precise Nanoscale Interactions ............................................................................ 31 2 RESEARCH OBJECTIVE ........................................................................................... 35 3 EFFICIENT AND CHEMOSELECTIVE SYNTHESIS OF OMEGA, OMEGA- HETERODIFUNCTIONAL POLYMERS..................................................................... 38 3.1 Introduction ........................................................................................................... 38 3.2 Results and Discussion ........................................................................................ 40 3.3 Conclusion ............................................................................................................ 47 3.4 Materials and Methods ......................................................................................... 47 3.4.1 Materials ...................................................................................................... 47 3.4.2 Characterization .......................................................................................... 48 3.4.3 End-Group Functionalization of mPEG to Dichlorotriazine-mPEG ........... 48 3.4.4 2-Furylmethanethiol Conjugation to 2-mPEG-4,6-dichloro-1,3,5- triazine ............................................................................................................... 49 3.4.5 4-Benzylpiperidine Conjugation to 2-mPEG-4-(2-furylmethanethiol)-6- chloro-1,3,5-triazine .......................................................................................... 49 3.4.6 Phenylmethanethiol Conjugation to 2-mPEG-4-(2-furylmethanethiol)- 6-chloro-1,3,5-triazine ....................................................................................... 49 3.4.7 1-Phenylmethanamine Conjugation to 2-mPEG-4-(2- furylmethanethiol)-6-chloro-1,3,5-triazine ........................................................ 50 3.4.8 Phenylmethanol Conjugation to 2-mPEG-4-(2-furylmethanethiol)-6- chloro-1,3,5-triazine .......................................................................................... 50 7 3.4.9 1-(2-Furyl)methylamine Conjugation to 2-mPEG-4,6-dichloro-1,3,5- triazine ............................................................................................................... 50 3.4.10 4-Benzylpiperidine Conjugation to 2-mPEG-4-[1-(2- furyl)methylamine]-6-chloro-1,3,5-triazine ....................................................... 51 3.4.11 Phenylmethanethiol Conjugation to 2-mPEG-4-[1-(2- furyl)methylamine]-6-chloro-1,3,5-triazine ....................................................... 51 3.4.12 1-Phenylmethanamine Conjugation to 2-mPEG-4-[1-(2- furyl)methylamine]-6-chloro-1,3,5-triazine ....................................................... 51 3.4.13 Phenylmethanol Conjugation to 2-mPEG-4-[1-(2-furyl)methylamine]- 6-chloro-1,3,5-triazine ....................................................................................... 52 3.4.14 2-Furanmethanol Conjugation to 2-mPEG-4,6-dichloro-1,3,5-triazine.... 52 4 MILD AND EFFICIENT SYNTHESIS OF OMEGA, OMEGA- HETERODIFUNCTIONALIZED POLYMERS AND POLYMER BIOCONJUGATES ..................................................................................................... 53 4.1 Introduction ........................................................................................................... 53 4.2 Results and Discussion ........................................................................................ 55 4.2.1 Conjugating BTF to mPEG-amine .............................................................. 55 4.2.2 Synthesizing Omega, Omega-Homodifunctional Polymers ..................... 55 4.2.3 Synthesizing Omega, Omega-Heterodifunctional Polymers ..................... 57 4.2.4 Conjugating Omega, Omega-Heterodifunctional Polymers to Avidin ....... 60 4.3 Conclusions .......................................................................................................... 61 4.4 Materials and Methods ......................................................................................... 62 4.4.1
Recommended publications
  • Functional Supramolecular Systems and Materials Bert Meijer Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
    MRS/E-MRS Joint Chapter of Hasselt University Institute for Materials Research (IMO-IMOMEC), Belgium Friday, 7th February 2020 at 10.00h A102, Building D, Hasselt University, Diepenbeek Functional supramolecular systems and materials Bert Meijer Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands Biography E.W. “Bert” Meijer is Distinguished University Professor in the Molecular Sciences, Professor of Organic Chemistry at the Eindhoven University of Technology and co-director of the Institute for Complex Molecular Systems. After receiving his PhD degree at the University of Groningen with Hans Wynberg, he worked for 10 years in industry (Philips and DSM). In 1991 he was appointed in Eindhoven, while in the meantime he has held part-time positions in Nijmegen, Mainz, and Santa Barbara, CA. Bert Meijer is a member of many editorial advisory boards, including Advanced Materials and the Journal of the American Chemical Society. Bert Meijer has received a number of awards, including the Spinoza Award in 2001, the ACS Award for Polymer Chemistry in 2006, the AkzoNobel Science Award 2010, the International Award of the Society of Polymer Science Japan in 2011, the Cope Scholar Award of the ACS in 2012, the Prelog Medal in 2014, the Nagoya Gold Medal in 2017 and the Chirality Medal in 2018. He is a member of a number of academies and societies, including the Royal Netherlands Academy of Science, where he is appointed to Academy Professor in 2014. Abstract The intriguing prospects of molecular electronics, nanotechnology, biomaterials, and the aim to close the gap between synthetic and biological molecular systems are important ingredients to study the cooperative action of molecules in the assembly towards functional supramolecular materials and systems.
    [Show full text]
  • Elegant Resume
    RESUME BERT MEIJER PERSONAL INFORMATION Name: Prof. dr. Egbert Willem Meijer Date of birth: April 22, 1955 Place of birth: Groningen, the Netherlands Marital status: Married and two children Nationality: Dutch Address: Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, the Netherlands Tel.: +31-40-2473101 (University), +31-40-2213323 (home) E-mail: [email protected] Webpage: www.meijerlab.nl EDUCATION 1967-1972 High School Appingedam 1972-1978 BSc and MSc in Organic Chemistry at University of Groningen 1978-1982 PhD degree in Organic Chemistry at University of Groningen, summa cum laude; advisor: prof. dr. Hans Wynberg EXPERIENCE 1982-1989 Philips Research Laboratories Eindhoven Research scientist Molecular Materials 1989-1992 DSM Research Geleen - Head of department "New Materials" 1991- Eindhoven University of Technology; Chemistry & Chemical Engineering Full professor of Organic Chemistry 1994- Radboud University Nijmegen Adjunct professor of Macromolecular Chemistry 1999- Eindhoven University of Technology; Biomedical Engineering Full professor of Organic Chemistry 2004 - Eindhoven University of Technology Distinguished University Professor of Molecular Sciences 2006- University of California, Santa Barbara Distinguished Visiting Professor 2008- Eindhoven University of Technology Scientific Director of the Institute for Complex Molecular Systems 2014- Royal Netherlands Academy of Arts and Sciences Academy professor 2018- External scientific member of the Max Planck Institute
    [Show full text]
  • Seunghyun Sim Bas Van Genabeek Takuzo Aida Bert Meijer
    In association with NASA Takuzo Aida December 10, 2019 Seunghyun Sim Bas van Genabeek Bert Meijer Tokyo University Caltech SyMO-Chem Eindhoven University . cmeacs.org In association with NASA ACS GLOBAL OUTSTANDING GRADUATE STUDENT & MENTOR AWARDS IN POLYMER SCIENCE AND ENGINEERING SPONSORED BY CME Seunghyun Sim Bas van Genabeek Postdoc Researcher Caltech SyMO-Chem Takuzo Aida Bert Meijer Prof. Tokyo University Distinguished Professor Riken Group Director Eindhoven University . December 10, 2019 cmeacs.org In association with NASA 2:00 pm – Awards Presentation and Talk on Engineering self-assembly of protein polymers for functional materials. Seunghyun Sim – Proteins are monodisperse polymers that fold into a specific nanoscale structure. These state-of-art nanoscale machineries exert highly precise mechanical motions and process environmental inputs by the combination of allosteric effects. My research focuses on finding interdisciplinary solutions for designing a library of functional protein materials, mainly from the principles in supramolecular chemistry, molecular biology, and polymer science. In this symposium, I will discuss the design of protein-based macromolecular architectures in multiple dimensions, understanding their property for the therapeutic application, and in situ synthesis of extracellular protein network by living organisms for generating engineered living materials. Profile – Seunghyun Sim graduated from Seoul National University with B.S. degrees in Chemistry and Biological Sciences in 2012. She conducted her doctoral research with professor Takuzo Aida at the University of Tokyo and received her M.Eng. and Ph.D. in 2017. Her thesis work focused on engineering protein-based supramolecular nanostructures and functions. She is currently a postdoctoral fellow at California Institute of Technology in the lab of professor David Tirrell.
    [Show full text]
  • Meet the Editorial Board DOI: 10.1039/C001033m
    PROFILE www.rsc.org/polymers | Polymer Chemistry Meet the Editorial Board DOI: 10.1039/c001033m Professor David Haddleton, for Polymer Research, obtaining her PhD a Member of the Chinese Academy of Editor-in-Chief in 1998 for work in the area of fullerene Sciences. adducts and polymers. A postdoctoral Professor Academician Yang was fellowship with CPIMA (NSF-Center for a faculty member of Fudan University Polymer Interfaces and Macromolecular before he was appointed Vice President Assemblies) brought her to the IBM for Research in 1999. In 2006, he was Almaden Research Center, California appointed Director General of the USA, to work under the direction of Prof. Department of Degree and Postgraduate Craig J. Hawker focusing on the devel- Education, State Council of the People’s opment of new living free polymerization Republic of China. Professor Academi- techniques and approaches to nanoscopic cian Yang serves as senior advisor to the materials. In 2001 she joined XenoPort, Shanghai Municipal Government. He Inc. as a Staff Scientist investigating was inaugurated as President of Fudan enabling technologies for the increased University in January 2009. bioavailability of macromolecular thera- The academic interests of Professor peutics. After this extensive industrial Academician Yang are in condensed experience she started at Vanderbilt matter physics and polymer science. He David Haddleton is Professor of Chem- University as Assistant Professor in the owns many domestic and international istry at the University of Warwick, UK. Department of Chemistry in 2004 with patents and serves on the boards of Professor Haddleton’s research centres a secondary appointment in the Depart- several academic journals including on controlled polymerisation to give ment of Pharmacology, Vanderbilt Chinese Journal of Chemistry and Science macromolecules of designed, desired and Medical School.
    [Show full text]
  • Provisional Programme ISACS5
    CHALLENGES IN ORGANIC MATERIALS AND SUPRAMOLECULAR CHEMISTRY – ISACS6 PEKING UNIVERSITY, BEIJING, CHINA PROGRAMME Lectures will be held in Sunny Hall, posters will be situated in Press Hall Friday 2 September 2011 WELCOME RECEPTION 19:00 Kindly sponsored by the Beijing National Laboratory for Molecular Sciences. 20:00 CLOSE Saturday 3 September 2011 Bioinspired Nanoscience and Nanotechnology Session Chair: Dave Leigh, University of Edinburgh, UK Opening Comments 08:45 Dave Leigh, University of Edinburgh, UK 09:00 Plenary: Self-Assembly of Supramolecular Materials for Energy and Medicine PLEN1 Samuel Stupp, Northwestern University, USA 09.40 DNA as a Supramolecular Scaffold for Assemblies of Chromophores O1 Eugen Stulz, University of Southampton, UK 10.00 Plenary: Smart Supramolecular Systems from Aqueous Assembly of Aromatic Rods PLEN2 Myongsoo Lee, Seoul National University, Korea 10.40 COFFEE Bioinspired Nanoscience and Nanotechnology Session Chair: Phil Gale, University of Southampton, UK Plenary: Molecular Behavior in Small Spaces 11.10 Julius Rebek, The Skaggs Institute for Chemical Biology and The Scripps Research Institute, PLEN3 USA 11.50 Assembly of Coordiantion Container Molecules O2 Cheng-Yong Su, Sun Yat-Sen University, China 12.10 Plenary: Making the Tiniest Machines PLEN4 David Leigh, University of Edinburgh, UK 12.50 LUNCH, SHAOYUAN BUILDING 2 RESTAURANT Bioinspired Nanoscience and Nanotechnology Session Chair: Eugen Stulz, University of Southampton, UK 14.20 Plenary: Supramolecular DNA Assembly: Towards Biological and
    [Show full text]
  • Elegant Resume
    RESUME BERT MEIJER PERSONAL INFORMATION Name: Prof. dr. Egbert Willem “Bert” Meijer Date of birth: April 22, 1955 Place of birth: Groningen, the Netherlands Marital status: Married and two children Nationality: Dutch Address: Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, the Netherlands Tel.: +31-40-2473101 (University), +31-40-2213323 (home) E-mail: [email protected] Webpage: www.meijerlab.nl EDUCATION 1967-1972 High School Appingedam 1972-1978 BSc and MSc in Organic Chemistry at University of Groningen 1978-1982 PhD degree in Organic Chemistry at University of Groningen; advisor: prof. dr. Hans Wynberg EXPERIENCE 1982-1989 Philips Research Laboratories Eindhoven Research scientist Molecular Materials 1989-1992 DSM Research Geleen - Head of the Section "New Materials" 1991- Eindhoven University of Technology; Chemistry & Chemical Engineering Full professor of Organic Chemistry 1994- Radboud University Nijmegen Adjunct professor of Macromolecular Chemistry 2004 - Eindhoven University of Technology Distinguished University Professor of Molecular Sciences 2006- University of California, Santa Barbara Distinguished Visiting Professor 2008-2018 Eindhoven University of Technology Scientific Director of the Institute for Complex Molecular Systems 2014- Royal Netherlands Academy of Arts and Sciences Academy professor 2018- Max Planck Institute for Polymer Research, Mainz, Germany External scientific member RESEARCH INTERESTS • Supramolecular polymers and their polymerization processes
    [Show full text]
  • Mastering Complexity: Functional Supramolecular Systems
    Mastering complexity: functional supramolecular systems Bert Meijer Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands. E-mail: [email protected] The intriguing prospects of molecular electronics, nanotechnology, biomaterials, and the aim to close the gap between synthetic and biological molecular systems are important ingredients to study the cooperative action of molecules in the self-assembly towards functional supramolecular systems. The design and synthesis of well-defined supramolecular architectures requires a balanced choice between covalent synthesis and the self-assembly of the fragments prepared. The current self-assembly processes are primarily controlled by solvent, temperature or concentration. For synthetic chemists, the non- covalent synthesis of these supramolecular architectures is regarded as one of the most challenging objectives in science: How far can we push chemical self-assembly and can we get control over the kinetic instabilities of the non-covalent architectures made? How can we go from self-assembly to self- organization? Where the number of different components is increasing the complexity of the system is increasing as well. Mastering this complexity is a prerequisite to achieve the challenges in creating functional systems. In the lecture we illustrate our approach using a number of examples out of our own laboratories, with the aim to come to new strategies for multi-step non-covalent synthesis of functional supramolecular systems. E.W. “Bert” Meijer is Distinguished University Professor in the Molecular Sciences, Professor of Organic Chemistry at the Eindhoven University of Technology and scientific director of the Institute for Complex Molecular Systems.
    [Show full text]
  • MATTHEW B. BAKER Maastricht | the Netherlands [email protected]
    MATTHEW B. BAKER Maastricht | the Netherlands [email protected] EDUCATION University of Florida, Gainesville, FL Ph. D. in Organic Chemistry, College of Liberal Arts and Sciences 2007–2012 Thesis Title: “Molecular multifunctionalization via electronically coupled lactones” New Venture Certificate, Warrington School of Business Clemson University, Clemson, SC B.S. in Chemistry, minor in Physics 2002–2006 RESEARCH POSITIONS Assistant Professor MERLN, Maastricht University, Maastricht, NL 2017–present Post‐doctoral Researcher MERLN, Maastricht University, Maastricht, NL 2015–2017 Post‐doctoral Researcher Eindhoven University of Technology, Eindhoven, NL 2012–2015 Advisor: Prof E. W. (Bert) Meijer Graduate Student University of Florida, Gainesville, FL, USA 2007–2012 Advisor: Prof. Ronald K. Castellano Chemist I Tetramer Technologies LLC, Pendelton, SC, USA 2006–2007 Undergraduate Researcher Clemson University, Clemson, SC, USA 2004–2006 Advisor: Prof. Dev P. Arya PUBLICATIONS 1 AA Aldana, ,S Houben, L Moroni, MB Baker*, LM Pitet. “Trends in double networks as bioprintable and injectable hydrogel scaffolds for tissue regeneration.” ACS Biomat. Sci. Eng., 2021, in press. DOI 2 AJ Feliciano, C van Blitterswijk, L Moroni, MB Baker.* “Realizing Tissue Integration with Supramolecular Hydrogels.” Acta Biomater., 2021, in press. DOI 3 F Zaccarian, MB Baker*, MJ Webber. “Biomedical uses of sulfobetaine‐based zwitterionic materials.” Org. Mater., 2020, 2, 342–357. DOI 4 T Geuens, FAA Ruiter, A Schumacher, FLC Morgan, T Rademakers, LE Wiersma, CW van den Berg, TJ Rabelink, MB Baker*, VLS LaPointe. “Thiol‐ene cross‐linked alginate hydrogel encapsulation modulates the extracellular matrix of kidney organoids by reducing abnormal type 1a1 collagen deposition.” bioRxiv, 2020, Preprint. DOI 5 A Malheiro, F Morgan, MB Baker, L Moroni, P Wieringa.
    [Show full text]
  • Curriculum Vitae Peter A
    CURRICULUM VITAE PETER A. KOREVAAR Name: dr. ir. Pieter Aart (Peter) Korevaar Born: Graafstroom (The Netherlands), August 1, 1986 Nationality: Netherlands Radboud University | Institute for Molecules and Materials (IMM) Huygensgebouw 03.012 | Heyendaalseweg 135 | 6525 AJ Nijmegen | The Netherlands [email protected] | +31 (0)24 36 52137 | www.ru.nl/lifelikematerials RESEARCH EXPERIENCE 04/2017 – present Assistant Professor (tenure-track) Radboud University, Nijmegen, NL. Research topic: Life-like materials, non-equilibrium supramolecular systems. 06/2014 – 03/2017 Post-doctoral researcher (materials science & chemistry) in research group of prof. Joanna Aizenberg, Harvard University, Cambridge, USA. Research topic: Non-equilibrium adaptive systems. Non-equilibrium signal processing in hydrogel micro-actuators. Non-equilibrium self-assembly. Self-oscillating hydrogel systems via chemical feedback mechanisms. 02/2014 – 05/2014 Post-doctoral researcher (supramolecular chemistry & self-assembly) in research group of prof. E.W. Meijer, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, NL. Research topic: Out-of-equilibrium self-assembly. 2010 – 2014 PhD student (supramolecular chemistry & self-assembly) in research group of prof. E.W. Meijer, Eindhoven University of Technology. Research topic: Mechanisms of molecular self-assembly. Kinetic studies on aggregation processes. Analysis of assembly pathways (experimental and with kinetic models). Development of pathway selection strategies in self-assembly. Assembly of π-conjugated molecules for organic electronics, and peptide- amphiphiles for biomedical applications. 2009 Internship IBM Almaden Research Center, San Jose, USA in polymer research group of dr. James Hedrick (3 months). Research topic: Synthesis and self-assembly of amphiphilic block-copolymers for antimicrobial materials. 2008 – 2009 Master thesis project in research group of prof.
    [Show full text]
  • Organizations in Supramolecular Polymers: from the Solution to the Bulk Behavior Jessalyn Cortese
    Organizations in supramolecular polymers: from the solution to the bulk behavior Jessalyn Cortese To cite this version: Jessalyn Cortese. Organizations in supramolecular polymers: from the solution to the bulk behavior. Polymers. Université Pierre et Marie Curie - Paris VI, 2013. English. pastel-00813603 HAL Id: pastel-00813603 https://pastel.archives-ouvertes.fr/pastel-00813603 Submitted on 15 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A BCDEFFFAFDF ABCDEDB !!"!# AFBFDEBDBDD D!CDEFF$FAFDF DDCD %#&##!'&!('&!)!* )&'&##&!&#)&'&## CFDEDD DEDBF FCD !"#$%#&'(#&) *BDDBDCD ! D+FBEED,-#'./0'12,3'+ +F/*BDBDDCD ! D(DBEDD+41)#&-5 )FBBD !"6DE/7BE8FC#-90 )FBDB ! D!E/4#' &: EBD !"&";"<(DB=!&'6&) ABCDEB Table of contents Table of contents Organizations in supramolecular polymers: from the solution to the bulk behavior Introduction...............................................................................................7 Acronyms and Abbreviations..................................................................11
    [Show full text]
  • 1 Reaction of Researchers to Plan S; Too Far, Too Risky? an Open Letter
    Reaction of Researchers to Plan S; Too far, too risky? An Open Letter from Researchers to European Funding Agencies, Academies, Universities, Research Institutions, and Decision Makers We support open access (OA) and Plan S is probably written with good intentions. However, Plan S1, as currently presented by the EU (and several national funding agencies) goes too far, is unfair for the scientists involved and is too risky for science in general. Plan S has far- reaching consequences, takes insufficient care of the desires and wishes of the individual scientists and creates a range of unworkable and undesirable situations: (1) The complete ban on hybrid (society) journals of high quality is a big problem, especially for chemistry. Apart from the fact that we won’t be allowed to publish in these journals anymore, the direct effect of Plan S and the way in which some national funding agencies and academic/research institutions seem to want to manage costs may eventually even lead to a situation where we won’t even be able to legally read the most important (society) journals of for example the ACS, RSC and ChemPubSoc anymore. Note that in their announcement of Plan S, the Dutch funding organisation NWO (for example) wrote that they expect to cover the high article processing charges (APCs) associated with the desired Gold OA publishing model from money freed by disappearing or stopped subscriptions to existing journals2. As such, Plan S may (eventually) forbid scientists access to (and publishing in) >85% of the existing and highly valued (society) journals! So effectively Plan S would block access to exactly those journals that work with a valuable and rigorous peer-review system of high quality.
    [Show full text]
  • Editorial Advisory Board Editor: Peter J. Stang
    EDITOR: PETER J. STANG Department of Chemistry, University of Utah Salt Lake City, Utah 84112-0850 (801) 585-6415 [email protected] ASSOCIATE EDITORS Phil S. Baran Taeghwan Hyeon Hanadi F. Sleiman The Scripps Research Institute, Seoul National University, South Korea McGill University, Canada Scripps California [email protected] [email protected] [email protected] William D. Jones Weihong Tan Kara L. Bren University of Rochester Hunan University, China University of Rochester [email protected] & University of Florida [email protected] [email protected] Michelle L. Coote Thomas E. Mallouk Claudia Turro Australian National University The Pennsylvania State University [email protected] [email protected] The Ohio State University [email protected] Benjamin F. Cravatt Shelley D. Minteer Suzanne Walker The Scripps Research Institute, University of Utah Scripps California [email protected] Harvard University [email protected] [email protected] Chad A. Mirkin Paul S. Cremer Li-Jun Wan Northwestern University The Pennsylvania State University Institute of Chemistry, [email protected] [email protected] Chinese Academy of Sciences, China Lyndon Emsley Klaus Müllen [email protected] Ecole Polytechnique Fédérale de Lausanne Max Planck Institute for Polymer Research, Karen L. Wooley (EPFL), Switzerland Mainz, Germany Texas A&M University [email protected] [email protected] [email protected] Jean M. J. Fréchet Eiichi Nakamura Klaas Wynne King Abdullah University of The University of Tokyo, Japan University of Glasgow, United Kingdom Science and Technology, Saudi Arabia [email protected] [email protected] [email protected] Melanie S.
    [Show full text]