2006-1488: LABORATORY DEMONSTRATIONS/EXPERIMENTS IN FREE AND FORCED

Edgar Clausen, University of Arkansas EDGAR C. CLAUSEN Dr. Clausen currently serves as Adam Professor of Chemical Engineering at the University of Arkansas. His research interests include bioprocess engineering (fermentations, kinetics, reactor design, bioseparations, process scale-up and design), gas phase fermentations, and the production of energy and chemicals from biomass and waste. Dr. Clausen is a registered professional engineer in the state of Arkansas.

William Penney, University of Arkansas W. ROY PENNEY Dr. Penney currently serves as Professor of Chemical Engineering at the University of Arkansas. His research interests include fluid mixing and process design. Professor Penney is a registered professional engineer in the state of Arkansas. Page 11.857.1

© American Society for Engineering Education, 2006 Laboratory Demonstrations/Experiments in Free and Forced Convection Heat Transfer Introduction Anumberofpapershavebeenwrittenrecentlyonmethodsforimprovingorsupplementingthe teachingofheattransferincludingtheuseofspreadsheetstosolvetwodimensionalheattransfer problems 1,anewtransportapproachtoteachingturbulentthermalconvection 2,theuseof computerstoevaluateviewfactorsinthermalradiation 3,andanewcomputationalmethodfor teachingfreeconvection 4.Supplementalexperimentsforuseinthelaboratoryorclassroomhave alsobeenpresentedincludingrathernovelexperimentssuchasthedryingofatowel 5andthe cookingofFrenchfryshapedpotatoes 6.HunkelerandSharp 7foundthat42%ofstudentsin seniorlaboratoryoverafouryearperiodwereType3learners,thatis,actionoriented“hands on”commonsenselearners.Thus,anexcellentmethodforreinforcingcoursecontentisto activelyinvolvestudentsinlaboratoryexercisesordemonstrationswhicharedesignedto comparetheirexperimentaldatawithdataorcorrelationsfromtheliterature. AspartofthecombinedrequirementsforCHEG3143,HeatTransport,andCHEG3232, LaboratoryII,juniorlevelchemicalengineeringstudentsattheUniversityofArkansaswere requiredtoperformsimpleheattransferexperimentsordemonstrationsusinginexpensive materialsthatarereadilyavailableinmostengineeringdepartments.Duringthefirstofferingin theFallsemesterof2004,thestudentswererequiredtodesign,implementandanalyzethe resultsfrombasicexperiments.DuringthesecondofferingintheFallsemesterof2005,the studentswereaskedtosuggestandimplementimprovementsinthebasicexperimentaldesign whichcouldleadtobetteragreementbetweentheirexperimentalresultsandresultsfrom literaturecorrelations.Thisexercisehasseveralbenefits: • Itprovidesanopportunityforstudentstohaveadditional“handson”experience; • Itdemonstratesaphysicalapplicationofcorrelationsfoundinthetextbook;and, • Ithelpsstudentsdevelopanappreciationforthelimitationsofliteraturecorrelations. Resultsfromthreeoftheseexperiments(freeconvectioncoolingofanupwardfacingplate, forcedconvectioncoolingbyflowingairoveranupwardfacinghorizontalplate,andforced convectionheatingofarodbyflowingairthroughanannulus)aredescribedbelow.Inaddition, surveyandtestresultsarepresentedwhichhelptodemonstratewhetherthe experiments/demonstrationsimprovedorenhancedthestudents’understandingofthe appropriatenessandlimitationsofheattransfercorrelationsfoundintheliterature. Free Convection Heat Transfer from an Upward Facing Horizontal Plate

Freeconvectionheattransferisencounteredinmanypracticalapplications,includingheat transferfrompipes,transmissionlines,baseboardheatersandsteamradiators.Correlationsare availableforpredictingfreeconvectionheattransfercoefficientsformanydifferentgeometries. Oneoftheimportantgeometriesistheupwardfacinghorizontalheatedsurfaceorplate,the subjectofthisinvestigation.Theoverallobjectivesofthisexperimentwereto: 1. Determinetheexperimentalfreeconvectionheattransfercoefficientforthetopsurfaceof Page 11.857.2 ahorizontalhotplateexposedtoair,and 2. Comparetheseresultswithresultsgeneratedfromtheappropriatecorrelationof ChurchillandChu 8: 1 Nu = 0.54Ra 4 104 < Ra < 107 (1) 1 Nu= .0 15Ra 4107 < Ra <1011 (2) Figures1and2showschematicsoftheexperimentalapparatus,andFigures35show photographsoftheactualequipmentusedintheexperiment.Alistofequipmentanddetailed safeexperimentalprocedureswaspresentedbyClausen et al. 9,andmayalsobeobtainedfrom thecorrespondingauthor.Briefly,analuminumplatewasheatedto~65°Cbysettingitona woodenplatforminaninsulatedbox,closingthelidandheatingthesurroundingairinthebox withanordinaryhairdryerinsertedinthetopofthebox.Afterheatingtheplate,itwassetonan insulatedsurfaceinastillroomandwrappedwithinsulationsothatonlytheblackpainted surfacewasexposed(seeFigures2and4).Aphotographofthesecondyearmodificationofthe experimentisshowninFigure5,whereadropclothcurtainwasusedtobetterisolatethe apparatusfromairdisturbances.Athermocouplewasinsertedintotheplate,andtemperature wasmeasuredasafunctionoftimewhileobservingtheslowcoolingoftheplateduetofree convection.

Figure1.InsulatedWoodenBoxforHeatingtheAluminumPlate Page 11.857.3 Figure2.ExperimentalSetupforCoolingtheHorizontalInsulatedPlate

Figure3.PhotographofWoodenBoxFigure4.PhotographofApparatusfor UsedtoHeattheAluminumPlateCoolingtheInsulatedHorizontalPlate Page 11.857.4 Figure5.PhotographofDropClothusedtoIsolatetheEnvironment SurroundingtheAluminumPlate Itwasdesiredtocompareanexperimentallydeterminedheattransfercoefficientwith correlationsfoundintheliterature.Aheatbalanceontheplate,withnoheatgeneration,yields: dT − (hA (T − T ) + εσA (T 4 − T 4 )) = ρV ()C (3) S SURFACE ∞ S SURFACE ∞ P dt Althoughsmall,theheatbalancewasalsocorrectedfortheheatflowbyconductionfromthe aluminumplatethroughtheinsulationtothetable.Experimentaldataoftemperaturevs.time werethususedtodeterminethe“bestfit”experimentalheattransfercoefficientbyintegrating Equation3numericallyusingaTKSolver4 th orderRungaKuttaintegration.Theheattransfer coefficientfromtheliteraturewasdeterminedusingEquations1and2,wheretheRayleigh numberiscalculatedas: gβ (T − T )L3 Ra = SURFACE ∞ Pr (4) ν 2 InEquation4,thelengthoftheplateisthecharacteristiclengthinfreeconvectionand,fora horizontalflatplate,L=A S/P.Assumingthatthesurroundingairisanidealgas,thevolumetric expansioncoefficientmaybecalculatedas: 1 β = (5) T Finally,theheattransfercoefficient,hCORR ,maybecalculatedfromtheNusseltnumberas:

kNu h = (6) CORR L

Page 11.857.5 Figure6showsaplotoftheexperimentaltemperaturewithnodropclothasafunctionoftime, aswellasacurveshowinganumericalintegrationofEquation3usingthe“bestfit” experimentalheattransfercoefficient.Theemissivity(ε)oftheblackpaintedsurfacewas assumedtobe0.98.Theexperimentalheattransfercoefficientwas8W/m 2Katasurface temperatureof352K,whilethecoefficientbasedontheChurchill/Churelationshipwas5.6 2 W/m K.Thus,acorrectionfactor(h EXP /h CORR )of1.4wasneededinordertomatchthe experimentaldatawiththecorrelation.Whenthedropclothwasadded,thecorrectionfactorfell to1.2,indicatingthattheadditionofthedropclothwassignificantineliminatingaircurrents.

360 + + + 355 + + + + + 350 + + + + + 345 + + + + + 340 + + +

Temperature (K) Temperature + + 335 + + + + + 330

325 0 500 1000 1500 2000 2500 3000 3500 4000 Time (s) Figure6.Temperaturevs.TimeExperimentalData(+)andPredictedbyEquation4 2 MultipliedbyaFactorof1.4(h EXP =8W/m KatT SURFACE =352K) Forced Convection Heat Transfer from an Upward Facing Horizontal Plate

Forcedconvectionheattransferoccurswhenthefluidsurroundingasurfaceissetinmotionby anexternalmeanssuchasa,pumporatmosphericdisturbances.Thisstudywasconcerned withforcedconvectionheattransferfromafluid(air)flowingparalleltoaflatplateatvarying velocities.Theobjectivesofthisexperimentwereto: 1. Determinetheexperimentalforcedconvectionheattransfercoefficientforparallelflow

overaflatplate. Page 11.857.6 2. Comparetheexperimentheattransfercoefficientwiththecoefficientcalculatedfromthe correlationspresentedbyCengel 8,whogivesthefollowingcorrelationsfor local heat transfercoefficientsforforcedconvectionflowoverahorizontalplate: 5.0 3/1 Nu x = hx x / k = .0 332 Re x Pr forlaminarconditions,i.e.,Re<500,000 (7) 8.0 3/1 5 7 Nux = hx x / k = .0 0296Re Pr forturbulentconditions,i.e.,5x10 <Re<10 (8) Theintegrated average coefficientsaregivenby 5.0 3/1 Nu = hx / k = .0 332 Re x Pr forlaminarconditions,i.e.,Re<500,000 (9) Nu = hx / k = .0( 037Re 8.0 −871)Pr 3/1 turbulentconditions,5x10 5<Re<10 7(10) TheexperimentalsetupandprocedureswereessentiallythesameasshowninFigures14, exceptthatmultipleplateswereusedalongwithathreespeedfan.Thus,forcedconvectionheat transferwasmeasuredforhorizontalplatesattwoselecteddistancesfromthefanandatthree differentairspeeds.Ananemometerwasusedtomeasuretheairvelocityovertheplateatfive differentlateralpositionstodeterminetheaverageairvelocity.Aschematicoftheexperimental setupisshowninFigure7andphotographsoftheapparatusareshowninFigures8and9.Asis showninFigure9,aseriesofcardboardhoneycombdiffuserswasusedduringyear2inan attempttominimizeairturbulence.Thediffuserswerelocatedjustafterthefan(connectedtothe fanoutletbyaplastic“garbagebag”channel)andimmediatelyinfrontofthealuminumplates. Onceagain,alistofequipmentanddetailedsafeexperimentalprocedureswaspresentedby Clausen et al. 10 ,andmayalsobeobtainedfromthecorrespondingauthor.

Figure7.LocationofFanandPlatesfortheHorizontalPlateHeatTransferExperiment Page 11.857.7 Figure8.PhotographofExperimentalHorizontalPlateHeatTransferExperiment

Figure9.PhotographofDiffuserandConnectionbetweenFanandDiffuser

Page 11.857.8 Figure10showsaplotoftheexperimentaltemperatureforthefirstplate,withouttheair diffuser,asafunctionoftimeatanairvelocityof4.82m/s.Theprocedureforobtainingthe experimentalheattransfercoefficientwasessentiallythesameasinthepreviousexperiment. Theratiooftheexperimentalheattransfercoefficienttothecorrelationheattransfercoefficient rangedfrom2.73.3(averageof3.0)forthefirstplateatthreedifferentfanvelocities,andranged from1.72.4(averageof2.1)forthefourthplate.Whentheairdiffuserwasadded,theratiowas 1.81.9forthefirstplateandrangedfrom2.85.0(averageof3.9)forthefourthplate.Thus,the diffuseronlymarginallyaffectedtheeffectsofairturbulenceontemperaturemeasurement. Perhapstheadditionofadropclothincombinationwiththediffuserwouldhaveimprovedthe ratio.

69.5 + 69 + 68.5 + 68 +

67.5 + 67

66.5 +

66 + 65.5 + Plate Temperature (C) Temperature Plate 65 +

64.5 + 64 0 50 100 150 200 250 300 Time (s) Figure10.Temperaturevs.TimeExperimentalDatafromtheFirstPlate atanAirVelocityof4.82m/s Forced Convection Heat Transfer from Hot Air in an Annulus to the Inner Cylinder

Anotherimportantgeometryforforcedconvectionheattransferistheheatingorcoolingofa fluidflowingthroughanannulusbetweenanouterpipeandaninnercylinder.Theobjectivesof thisexperimentwereto: 1. Determinetheexperimentalforcedconvectionheattransfercoefficientfortheheatingof abrassrod,containedinanannulus,asairflowsthroughtheannulus,and Page 11.857.9 2. ComparetheseresultswiththeheattransfercoefficientfromtheDittusBoelter equation 8: Nu = 0.023 Re 0.8 Pr 0.4 (11)

wherethehydraulicdiameteroftheannulus(D H=D PIPE –D ROD )isusedasthe characteristiclengthinboththeReynoldsandPrandtlnumbers. Figure11showsaschematicoftheexperimentalapparatus,andFigures12and13show photographsoftheequipmentusedintheexperiment.Alistofequipmentanddetailedsafe experimentalprocedureswaspresentedbyClausen et al. 10,andmayalsobeobtainedfromthe correspondingauthor.Icewasusedtocoolabrassrodtoatemperatureof1012°C.Thewood andbrassrodsweretheninsertedintothePVCtubeasshowninFigure11,andathermocouple wasinsertedintothebrassrod.Thewoodrodwasusedtoprovideaninsidecylinderwhichis muchlongerthanthebrassrod,sothatfullyestablishedturbulentflowexistedpriortothehotair reachingthebrassrod.ThehairdryerwastheninsertedintothebottomofthePVCtube,and temperatureinsidethebrassrodwasmonitoredwithtime.Aftertheairflowhadreachedsteady state,thevelocityandambientairtemperatureoftheairexitingtheannuluswererecorded.The procedurewasrepeatedfordifferenthairdryerspeeds.Thecylinderisshowninthecenterof Figure12.Aphotographoftheairdiffuser,usedduringthesecondyearmodificationofthe experiment,isshowninFigure13.ThediffuserwasconnectedtothebottomofthePVCtubein anattempttominimizeairturbulence,muchlikethediffuserinthehorizontalplateexperiments.

Figure11.SchematicofAnnulusHeatingApparatus Page 11.857.10 Figure12.SchematicofAnnulusHeatingApparatus

Figure13.TwoViewsofDiffuserUsedinAnnulusHeatingApparatus Figure14showsaplotoftheexperimentaltemperaturefortherod,withouttheairdiffuser,asa functionoftimeatanairvelocityof4.22m/s.Theprocedureforobtainingtheexperimental heattransfercoefficientwasmuchthesameasinthepreviousexperiment.Theratioofthe experimentalheattransfercoefficienttothecorrelationheattransfercoefficientrangedfrom1.6 2.2fortherangeofairvelocities,withanaverageof1.8.Whentheairdiffuserwasadded,the ratioheldat1.0(h EXP =h CORR )forallairvelocities,showingthatthisairdiffuserwaseffectivein minimizingturbulenceinthissystemthatwasunaffectedbyoutsideaircurrents. Page 11.857.11

28

26 + + 24 + + 22 + + 20 + + 18 + + 16 +

Rod Temperature (C) Temperature Rod + 14 + + 12 +

10 -25 0 25 50 75 100 125 150 175 200 225 Time (s)

Figure14.Temperaturevs.TimeforExperiment#1withthe1inDiameterx8.1inLongBrass RodHeatedbya62°C,4.22m/sAirStreamina3inPipe Assessment of Educational Value

AfterthesecondofferingofthisexperimentalprogramduringtheFall,2005,semester,the participatingstudentswereaskedtoevaluatetheeffectivenessoftheprogramasaneducational tool,andwerealsogivenashortcompetencyquiztoalsoevaluateeffectiveness.Resultsfrom thesurveyofthe18participatingstudentsareshowninTable1.Perhapsmostimportantly,the studentsfeltthattheexperiments/demonstrationshelpedtoincreasetheirunderstandingofheat transfer(Statement1),andgavethemabetterunderstandingoftheapplicabilityandlimitations heattransfercorrelationsanddata(Statement2).Thestudentsalsofeltthat experiments/demonstrationsshouldbedevelopedinconjunctionwithothercoursesbesidesheat transfer(Statement3),andpreferredtheuseofgroupreports(asusedinthisexercise)inplaceof individualreports(asusedinmostoftheotherassignments)(Statement7).Thestudentswere lessenthusiasticaboutincludingtheexperiments/demonstrationsasaregularpartofLab2 (Statement4),usingtheexperiments/demonstrationsinplaceofmoretraditionallaboratory experiments(Statement5),andinworkinginthesmallergroupsof23people(usedinthis exercise),ascomparedtothegroupsof35peopleusedinotherexperiments(Statement6). Mostoftheexperimentsinthisexerciseactuallyrequiredalongertimecommitmentthan traditionallaboratoryexperiments,andthestudentswerenotparticularlyfondofTKSolverasa computationaltool.Finally,asexpected,thestudentsdislikedthemethodofgradingusedonthe experiments/demonstrations(amaximumoftwosubmissionstogetitcorrect;receivean‘A’or ‘F’)(Statement7),andinsteadpreferredtheusualmethodofgradingasinglelaboratoryreport Page 11.857.12 submission. Table1.ResultsfromtheHeatTransferExperiments/DemonstrationsSurvey Fall,2005 Survey Statement % of Students Surveyed 5 4 3 2 1 1.Theheattransferexperiments/demonstrationshelpedto 11 67 17 0 5 increasemyunderstandingofheattransfer 2.Theheattransferexperiments/demonstrationsgavemea 5 78 11 5 0 betterunderstandingofheattransfercorrelationsanddata, theirapplicabilityandlimitations 3.Experiments/demonstrationsshouldbedevelopedin 5 72 17 5 0 conjunctionwithothercoursesbesidesheattransfer 4.Heattransferexperiments/demonstrationsshouldbe 0 44 44 5 5 includedasaregularpartofLab2 5.Iprefertheexperiments/demonstrationstomore 5 44 33 17 0 traditionallaboratoryexperiments 6.Ipreferworkingingroupsof23people,insteadof35 11 22 50 11 5 people 7.Iprefergroupreportsinplaceofindividualreports 33 39 11 17 0 8.Ipreferthemethodofgradingusedontheheattransfer 0 5 28 44 22 experiments/demonstrationstotraditionalgradinginLab2 5—stronglyagree 4—agree 3—noopinion 2—disagree 1—stronglydisagree Thestudentswerealsogivencompetencyquizzestodemonstratewhethertheexperiments accomplishedthestatedobjectivesoftheexercise.Eachstudentwasgivenadifferent competencyquiz,dependinguponwhichexperimentthestudentran.Thequestionswhich pertaintothispaperare: 1. Inlayman’sterms,whatisthedifferencebetweenfreeandforcedconvection? 2. Whatwasthediffuser(orcurtain)supposedtodotoimproveyourresults?Didithelp? Whyorwhynot? 3. Whatcorrelationwasusedinpredictingtheforced(orfree)convectionheattransfer coefficientforyourexperiment?Anameordescriptionissufficient.Whatareits limitations? Eachstudentwasgiventhreequestionspertainingtohisorherexperiment,andwasexpectedto giveashortanswertoeachofthequestions.Thequizwasnotannounced,andnotesand textbookscouldnotbeusedduringthequiz.Thequizzesweregradedona06pointbasis(2 pointsperquestion).Fourofthe15studentstakingthequizscored6/6,8ofthestudentsscored 5/6,and4ofthestudentsscored4/6.Theseresultsdemonstratecompetency,andshowthatthe

objectivesoftheexercisehadindeedbeenmet. Page 11.857.13 Nomenclature 2 AS heattransferarea,m Cp specificheat,J/kgK DH hydraulicdiameteroftheannulus,m DPIPE diameterofouterpipe,m DROD diameterofrod(innercylinder),m g gravitationalconstant,m/s 2 h areaaverageconvectionheattransfercoefficient,W/m 2 K 2 hCORR heattransfercoefficientfromliteraturecorrelations,W/m K 2 hEXP heattransfercoefficientfromexperimentaldata,W/m K 2 hx localheattransfercoefficientatlengthxalongaflatplate,W/m K k fluidthermalconductivity,W/Mk L characteristiclengthinfreeconvection,As/P,m Nu areaaverageNusseltnumber,hx/korhD/k Nu x localNusseltnumberatlocationxalongflatplate,hx/k P perimeter,m Pr Prandtlnumberofthefluid Ra Rayleighnumber Re Reynoldsnumber,=VDρ/forcylinderorVxρ/foraflatplate Re x localReynoldsnumberatlocationxalongflatplate,Vxρ/ t time,s T temperature,K Tω ambienttemperatureofsurroundings,K TSURFACE surfacetemperature,K v fluidvelocity,m/s V volumeofplateorcylinder,m 3 x lengthalongflatplateinflowdirection,m β volumetricexpansioncoefficient,=1/T,K 1 ε surfaceemissivity ρ fluiddensity,kg/m 3 σ StefanBoltzmannconstant,W/m2K4 Bibliography

1. Besser,R.S.,2002,“SpreadsheetSolutionstoTwoDimensionalHeatTransferProblems.” Chemical Engineering Education ,Vol.36,No.2,pp.160165. 2. Churchill,S.W.,2002,“ANewApproachtoTeachingTurbulentThermalConvection,” Chemical Engineering Education ,Vol.36,No.4,pp.264270. 3. Henda,R.,2004,“ComputerEvaluationofExchangeFactorsinThermalRadiation,” Chemical Engineering Education ,Vol.38,No.2,pp.126131. 4. Goldstein,A.S.,2004,“AComputationalModelforTeachingFreeConvection,” Chemical Engineering Education ,Vol.38,No.4,pp.272278. 5. Nollert,M.U.,2002,“AnEasyHeatandMassTransferExperimentforTransportPhenomena,” Chemical Engineering Education ,Vol.36,No.1,pp.5659. 6. Smart,J.L.,2003,“OptimumCookingofFrenchFryShapedPotatoes:AClassroomStudyofHeatand MassTransfer,” Chemical Engineering Education ,Vol.37,No.2,pp.142147,153. 7. Hunkeler,D.,Sharp,J.E.,1997,“AssigningFunctionalGroups:TheInfluenceofGroupSize,Academic Page 11.857.14 Record,PracticalExperience,andLearningStyle,”Journal of Engineering Education ,Vol.86,No.4,pp. 321332. 8. Cengel,Y.A.,2003,HeatTransfer:APracticalApproach, McGrawHillBookCompany,NewYork. 9. Clausen,E.C.,Penney,W.R.,Colville,C.E.,Dunn,A.N.,ElQatto,N.M.,Hall,C.D.,Schulte, W.B.,vonderMehden,C.A.,2005,“Laboratory/DemonstrationExperimentsinHeatTransfer: FreeConvection,” Proceedings of the 2005 American Society of Engineering Education-Midwest Section Annual Conference . 10.Clausen,E.C.,Penney,W.R.,Dunn,A.N.,Gray,J.M.,Hollingsworth,J.C.,Hsu,P.T.,McLelland, B.K.,Sweeney,P.M.,Tran,T.D.,vonderMehdenC.A.,Wang,J.Y.,2005, “Laboratory/DemonstrationExperimentsinHeatTransfer:ForcedConvection,”Proceedings of the 2005 American Society of Engineering Education-Midwest Section Annual Conference . Page 11.857.15