University of Birmingham a Study on Ultrasonic Assisted Creep Feed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ceramic Machining: Assessment of Current Practice and Research Needs in the United States
United States Department of Commerce Technology Administration National Institute of Standards and Technology NAT'L INST. OF STAND & TECH R,LC. NIST Special Publication 834 ~ NiST REFERENCE PUBLICATIONS Ceramic Macnimng: Assessment of Current Practice and Research Needs in the United States 7he National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating -
Investigating the Effect of Cryo Treated Tool and Work Material in Ultrasonic Machining of Titanium Alloys
INVESTIGATING THE EFFECT OF CRYO TREATED TOOL AND WORK MATERIAL IN ULTRASONIC MACHINING OF TITANIUM ALLOYS. A THESIS Submitted in fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY in MECHANICAL ENGINEERING By GAURAV KUMAR DHURIA Registration. No. 950808008 THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University) PATIALA-147004, INDIA i PREFACE This research work was carried out by the author under the guidance of Dr. Ajay Batish, Professor, Department of Mechanical Engineering, Thapar University, Patiala and Dr. Rupinder Singh, Professor, Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana. The experimentation for the presented work was carried out on Ti-6Al-4V titanium alloy to explore the effect of six process parameters on machining response variables such as material removal rate, tool wear rate, surface roughness and dimensional accuracy. Sonic Mill 500W Ultrasonic Machine Tool available in the Mechanical Engineering Department at Thapar University, Patiala was used for experimentation. Following articles have been published from the presented work: 1. Gaurav Kumar Dhuria, Rupinder Singh, Ajay Batish (2016) Predictive modeling of surface roughness in ultrasonic machining of cryogenic treated Ti-6Al-4V. Engineering Computations, 33 (8) 2377 – 2394 (SCIE - Impact Factor 0.691). 2. Gaurav Kumar Dhuria, Rupinder Singh, Ajay Batish,(2016) Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V. J Braz. Soc. Mech. Sci. Eng., 39 (7) 2619-2634 (SCIE – Impact Factor 0.963). 3. Rupinder Singh, Gaurav Kumar Dhuria, Ajay Batish (2017) Effect of Cryogenic Treatment on Ultrasonic Machining of Titanium and Its Alloys: A Review, Reference Module in Materials Science and Materials Engineering, http://dx.doi.org/10.1016/B978-0-12-803581-8.04157-6. -
Precision in Machining: Research Challenges
NISTIR 5628 Precision in Machining: Research Challenges Hans A. Soons Simone L. Yaniv U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Manufacturing Engineering Laboratory Automated Production Technology Division Gaithersburg, MD 20899 QC i°o NIST . U56 NO. 5628 1995 NISTIR 5628 Precision in Machining: Research Challenges Hans A. Soons Simone L. Yaniv U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Manufacturing Engineering Laboratory Automated Production Technology Division Gaithersburg, MD 20899 May 1995 U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director Acknowledgments We would like to thank all the participants in the workshop on Precision Machining, held October 12, 1994, in Gaithersburg, MD, for their invaluable contributions during the round table discussions. Special thanks go to Ray McClure and Chi-Hung Shen for agreeing to present key addresses, and for sharing their invaluable insights into research needs in the field of machining and precision. We would like also to express our thanks to Don Blomquist and Alkan Donmez for their support and encouragement during the preparation of this document. Special thanks go to Jerry Halley for agreeing to serve as the workshop rapporteur. i 0 Executive Summary This report looks at critical research needs for leading-edge technology developments in machining and precision that are important to the competitiveness and economic growth of the U.S. discrete-part industry. This industry produces individual products such as aircraft, automobiles, industrial machinery, home appliances, electric equipment, and all the individual components of which they are made. -
Rotary Ultrasonic Machining of Hard-To-Machine Materials
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by K-State Research Exchange ROTARY ULTRASONIC MACHINING OF HARD-TO-MACHINE MATERIALS by NIKHIL CHURI B. S., University of Mumbai, India, 2002 ____________________________________________________ AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Industrial and Manufacturing Systems Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2010 1 ABSTRACT Titanium alloy is one of the most important materials used in major segments of industries such as aerospace, automobile, sporting goods, medical and chemical. Market survey has stated that the titanium shipment in the USA has increased significantly in last two decades, indicating its increased usage. Industries are always under tremendous pressure to meet the ever-increasing demand to lower cost and improve quality of the products manufactured from titanium alloy. Similar to titanium alloys, silicon carbide and dental ceramics are two important materials used in many applications. Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It comprises of a tool mounted on a rotary spindle attached to a piezo-electric transducer to produce the rotary and ultrasonic motion. No study has been reported on RUM of titanium alloy, silicon carbide and dental ceramics. The goal of this research was to provide new knowledge of machining these hard-to- machine materials with RUM for further improvements in the machining cost and surface quality. A thorough research has been conducted based on the feasibility study, effects of tool variables, effects of machining variables and wheel wear mechanisms while RUM of titanium alloy. -
Ultrasonic Machining (USM), 3
KNOWLEDGE INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING UNCONVENTIONAL MACHINING PROCESS UNIT I - INTRODUCTION Unconventional Machining Process – Need – Classification & Brief overview. MECH-KIOT Machining Processes Machining Processes Conventional Abrasive Nontraditional Turning Drilling Milling Other Grinding Lapping Mechanical Energy Polishing Other Electrochemical Thermal Energy Chemical Machining MECH-KIOT To reduce machining costs • Avoid excess machining allowances during primary processing • Achieve rough shape as “near net” as possible eg. Die casting a piston instead of sand casting reduces machining • Optimize initial shaping and final machining regarding the aspects like machine tools, cutting tools and cutting parameters MECH-KIOT Single – Point Tools Surface of revolution Plane (Job Surfaces rotating) Tool Feed parallel to axis Feed not parallel Job reciprocates reciprocates of rotation to axis of rotation shaping slotting (Cylindrical planing surfaces) External Internal turning, boring screw internal cutting screw cutting At any angle Simultaneous (Conical two axes motion surfaces) contouring, copy turning External taper Internal turning, Taper facing boring MECH-KIOT Multi – Point Tools Cylindrical Surface Plane Surfaces Two edge Multi edge Sizeable Chips Small Chips (Grinding) Surface Cutting cutting (Milling) Plane milling Broaching grinding Lapping drilling Gear shaping Sizeable Chips (Milling, Gear Small Chips cutting) Spiral milling (Grinding) Gear hobbing Cylindrical grinding Centre less grinding MECH-KIOT