Investigating the Effect of Cryo Treated Tool and Work Material in Ultrasonic Machining of Titanium Alloys
INVESTIGATING THE EFFECT OF CRYO TREATED TOOL AND WORK MATERIAL IN ULTRASONIC MACHINING OF TITANIUM ALLOYS. A THESIS Submitted in fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY in MECHANICAL ENGINEERING By GAURAV KUMAR DHURIA Registration. No. 950808008 THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University) PATIALA-147004, INDIA i PREFACE This research work was carried out by the author under the guidance of Dr. Ajay Batish, Professor, Department of Mechanical Engineering, Thapar University, Patiala and Dr. Rupinder Singh, Professor, Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana. The experimentation for the presented work was carried out on Ti-6Al-4V titanium alloy to explore the effect of six process parameters on machining response variables such as material removal rate, tool wear rate, surface roughness and dimensional accuracy. Sonic Mill 500W Ultrasonic Machine Tool available in the Mechanical Engineering Department at Thapar University, Patiala was used for experimentation. Following articles have been published from the presented work: 1. Gaurav Kumar Dhuria, Rupinder Singh, Ajay Batish (2016) Predictive modeling of surface roughness in ultrasonic machining of cryogenic treated Ti-6Al-4V. Engineering Computations, 33 (8) 2377 – 2394 (SCIE - Impact Factor 0.691). 2. Gaurav Kumar Dhuria, Rupinder Singh, Ajay Batish,(2016) Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V. J Braz. Soc. Mech. Sci. Eng., 39 (7) 2619-2634 (SCIE – Impact Factor 0.963). 3. Rupinder Singh, Gaurav Kumar Dhuria, Ajay Batish (2017) Effect of Cryogenic Treatment on Ultrasonic Machining of Titanium and Its Alloys: A Review, Reference Module in Materials Science and Materials Engineering, http://dx.doi.org/10.1016/B978-0-12-803581-8.04157-6.
[Show full text]