Evolution of Antp-Class Genes and Differential Expression of Hydra Hox͞parahox Genes in Anterior Patterning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Regulation of Parahox Genes by Retinoic Acid in the Invertebrate Chordate Amphioxus (Branchiostoma floridae)
Developmental Biology 327 (2009) 252–262 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Evolution of Developmental Control Mechanisms Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae) Peter W. Osborne a,1, Gérard Benoit b, Vincent Laudet b, Michael Schubert b,2, David E.K. Ferrier a,⁎,1,2 a Zoology Department, Oxford University, South Parks Road, Oxford, OX1 3PS, UK b Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France article info abstract Article history: The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster Received for publication 2 October 2008 displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a Revised 19 November 2008 manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox Accepted 19 November 2008 cluster is however a simpler system to study because it is composed of only three genes. We provide a Available online 7 December 2008 detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Keywords: Amphioxus Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx Retinoic acid expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts Gsx its anterior/posterior position. -
Endocrinology
Endocrinology INTRODUCTION Endocrinology 1. Endocrinology is the study of the endocrine system secretions and their role at target cells within the body and nervous system are the major contributors to the flow of information between different cells and tissues. 2. Two systems maintain Homeostasis a. b 3. Maintain a complicated relationship 4. Hormones 1. The endocrine system uses hormones (chemical messengers/neurotransmitters) to convey information between different tissues. 2. Transport via the bloodstream to target cells within the body. It is here they bind to receptors on the cell surface. 3. Non-nutritive Endocrine System- Consists of a variety of glands working together. 1. Paracrine Effect (CHEMICAL) Endocrinology Spring 2013 Page 1 a. Autocrine Effect i. Hormones released by cells that act on the membrane receptor ii. When a hormone is released by a cell and acts on the receptors located WITHIN the same cell. Endocrine Secretions: 1. Secretions secreted Exocrine Secretion: 1. Secretion which come from a gland 2. The secretion will be released into a specific location Nervous System vs tHe Endocrine System 1. Nervous System a. Neurons b. Homeostatic control of the body achieved in conjunction with the endocrine system c. Maintain d. This system will have direct contact with the cells to be affected e. Composed of both the somatic and autonomic systems (sympathetic and parasympathetic) Endocrinology Spring 2013 Page 2 2. Endocrine System a. b. c. 3. Neuroendocrine: a. These are specialized neurons that release chemicals that travel through the vascular system and interact with target tissue. b. Hypothalamus à posterior pituitary gland History of tHe Endocrine System Bertold (1849)-FATHER OF ENDOCRINOLOGY 1. -
Divergent Genes in Gerbils: Prevalence, Relation to GC-Biased Substitution, and Phenotypic Relevance Yichen Dai, Rodrigo Pracana and Peter W
Dai et al. BMC Evolutionary Biology (2020) 20:134 https://doi.org/10.1186/s12862-020-01696-3 RESEARCH ARTICLE Open Access Divergent genes in gerbils: prevalence, relation to GC-biased substitution, and phenotypic relevance Yichen Dai, Rodrigo Pracana and Peter W. H. Holland* Abstract Background: Two gerbil species, sand rat (Psammomys obesus) and Mongolian jird (Meriones unguiculatus), can become obese and show signs of metabolic dysregulation when maintained on standard laboratory diets. The genetic basis of this phenotype is unknown. Recently, genome sequencing has uncovered very unusual regions of high guanine and cytosine (GC) content scattered across the sand rat genome, most likely generated by extreme and localized biased gene conversion. A key pancreatic transcription factor PDX1 is encoded by a gene in the most extreme GC-rich region, is remarkably divergent and exhibits altered biochemical properties. Here, we ask if gerbils have proteins in addition to PDX1 that are aberrantly divergent in amino acid sequence, whether they have also become divergent due to GC-biased nucleotide changes, and whether these proteins could plausibly be connected to metabolic dysfunction exhibited by gerbils. Results: We analyzed ~ 10,000 proteins with 1-to-1 orthologues in human and rodents and identified 50 proteins that accumulated unusually high levels of amino acid change in the sand rat and 41 in Mongolian jird. We show that more than half of the aberrantly divergent proteins are associated with GC biased nucleotide change and many are in previously defined high GC regions. We highlight four aberrantly divergent gerbil proteins, PDX1, INSR, MEDAG and SPP1, that may plausibly be associated with dietary metabolism. -
Segregating Expression Domains of Two Goosecoid Genes During the Transition from Gastrulation to Neurulation in Chick Embryos
Development 124, 1443-1452 (1997) 1443 Printed in Great Britain © The Company of Biologists Limited 1997 DEV2146 Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos Lydia Lemaire1, Tobias Roeser1, Juan Carlos Izpisúa-Belmonte2 and Michael Kessel1,* 1Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany 2The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA *Author for correspondence (e-mail: [email protected]) SUMMARY We report the isolation and characterization of a chicken plate around the anterior streak and overlying the pre- gene, GSX, containing a homeobox similar to that of the chordal plate. We demonstrate that the GSX-positive part goosecoid gene. The structure of the GSX gene and the of the primitive streak induces gastrulation, while the GSC- deduced GSX protein are highly related to the previously expressing part induces neurulation. After full extension of described goosecoid gene. The two homeodomains are 74% the streak, the fate of cells now characterized by GSX is to identical. In the first few hours of chick embryogenesis, the undergo neurulation, while those expressing GSC undergo expression pattern of GSX is similar to GSC, in the gastrulation. We discuss the effect of a duplicated basic posterior margin of the embryo and the young primitive goosecoid identity for the generation of a chordate nervous streak. Later during gastrulation, expression of the two system in ontogeny and phylogeny. genes segregate. GSC is expressed in the anterior part of the primitive streak, then in the node, and finally in the pre- chordal plate. -
Lampreys, the Jawless Vertebrates, Contain Only Two Parahox Gene Clusters
Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters Huixian Zhanga,b,1, Vydianathan Ravia,1, Boon-Hui Taya, Sumanty Toharia, Nisha E. Pillaia, Aravind Prasada, Qiang Linb, Sydney Brennera,2, and Byrappa Venkatesha,c,2 aInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore; bChinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and cDepartment of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore Contributed by Sydney Brenner, July 6, 2017 (sent for review March 20, 2017; reviewed by José Luis Gómez-Skarmeta and Nipam H. Patel) ParaHox genes (Gsx, Pdx,andCdx) are an ancient family of develop- elephant shark, Callorhinchus milii; as well as the lobe-finned fish, mental genes closely related to the Hox genes. They play critical roles in coelacanth (Latimeria chalumnae), and spotted gar (Lepisosteus the patterning of brain and gut. The basal chordate, amphioxus, con- oculatus), a basal ray-finned fish (Actinopterygian), possess an ad- tains a single ParaHox cluster comprising one member of each family, ditional Pdx gene (called Pdx2)linkedtoGsx2 (Fig. 1) (8–10). In- whereas nonteleost jawed vertebrates contain four ParaHox genomic terestingly, teleosts that have experienced an additional round of loci with six or seven ParaHox genes. Teleosts, which have experienced genome duplication (3R) possess only six ParaHox genes distrib- an additional whole-genome duplication, contain six ParaHox genomic uted in six genomic loci (11, 12) (Fig. 1). As a consequence of the loci with six ParaHox genes. -
Marletaz-2015-Cdx Parahox Genes Acquired Disti
This is a repository copy of Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/90983/ Version: Published Version Article: Marlétaz, Ferdinand, Maeso, Ignacio, Faas, Laura et al. (2 more authors) (2015) Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. BMC Biology. p. 56. ISSN 1741-7007 https://doi.org/10.1186/s12915-015-0165-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Marlétaz et al. BMC Biology (2015) 13:56 DOI 10.1186/s12915-015-0165-x RESEARCHARTICLE Open Access Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution Ferdinand Marlétaz1, Ignacio Maeso1,3, Laura Faas2, Harry V. Isaacs2 and Peter W. H. Holland1* Abstract Background: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. -
Title of Dissertation Goes Here in All Caps
GENOME-WIDE ANALYSIS OF TRANSCRIPTION FACTORS ASCL1 AND PTF1A IN DEVELOPMENT AND CANCER APPROVED BY SUPERVISORY COMMITTEE Jane E. Johnson, Ph.D. Gang. Yu, Ph.D. Q. Richard Lu, Ph.D. Tae-Kyung Kim, Ph.D. DEDICATION I dedicate this to my mother and wife, for their love and devotion, and their endless support throughout my life. GENOME-WIDE ANALYSIS OF TRANSCRIPTION FACTORS ASCL1 AND PTF1A IN DEVELOPMENT AND CANCER by MARK DOMINIC BORROMEO DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2013 Copyright by Mark Dominic Borromeo, 2013 All Rights Reserved GENOME-WIDE ANALYSIS OF TRANSCRIPTION FACTORS ASCL1 AND PTF1A IN DEVELOPMENT AND CANCER Mark Dominic Borromeo, Ph.D. The University of Texas Southwestern Medical Center at Dallas, 2013 Jane E. Johnson, Ph.D. Cell fate specification in the developing embryo relies on combinations of transcription factors to regulate tissue specific gene programs. Many of the same transcription factors can be found in multiple tissue types and are crucial for their development, and at other times these same factors can be misused in disease states. The basic helix-loop-helix (bHLH) factors Ascl1 and Ptf1a are examples of factors that give rise to and function in multiple tissues. Ascl1 and Ptf1a are essential for generating the correct number and sub-type of neurons in multiple regions of the nervous system. In addition, Ptf1a is required in the developing pancreas for both its formation and maturation, while Ascl1 is crucial for tumor v growth in malignant small cell lung carcinoma (SCLC). -
Breakup of a Homeobox Cluster After Genome Duplication in Teleosts
Breakup of a homeobox cluster after genome duplication in teleosts John F. Mulley*, Chi-hua Chiu†, and Peter W. H. Holland*‡ *Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom; and †Rutgers University, Department of Genetics, Life Sciences Building, Piscataway, NJ 08854 Edited by Eric H. Davidson, California Institute of Technology, Pasadena, CA, and approved May 11, 2006 (received for review January 13, 2006) Several families of homeobox genes are arranged in genomic been active throughout vertebrate history, we show that in the clusters in metazoan genomes, including the Hox, ParaHox, NK, ray-finned fish clade, the ParaHox gene cluster was lost in the Rhox, and Iroquois gene clusters. The selective pressures respon- evolution of teleosts after divergence from more basal ray- sible for maintenance of these gene clusters are poorly under- finned fish. stood. The ParaHox gene cluster is evolutionarily conserved be- tween amphioxus and human but is fragmented in teleost fishes. Results We show that two basal ray-finned fish, Polypterus and Amia, each We searched the emerging genome sequences of zebrafish possess an intact ParaHox cluster; this implies that the selective (Danio rerio; www.sanger.ac.uk͞Projects͞Drerio) and two pressure maintaining clustering was lost after whole-genome pufferfish [Tetraodon nigroviridis (10) and Takifugu rubripes duplication in teleosts. Cluster breakup is because of gene loss, not (11)] for DNA sequences assignable to the Gsx, Xlox, and Cdx transposition or inversion, and the total number of ParaHox genes gene families. Comparison between species gave a consistent is the same in teleosts, human, mouse, and frog. -
Septal Contributions to Olfactory Bulb Interneuron Diversity in the Embryonic Mouse Telencephalon: Role of the Homeobox Gene Gsx2 Shenyue Qin1,2, Stephanie M
Qin et al. Neural Development (2017) 12:13 DOI 10.1186/s13064-017-0090-5 RESEARCH ARTICLE Open Access Septal contributions to olfactory bulb interneuron diversity in the embryonic mouse telencephalon: role of the homeobox gene Gsx2 Shenyue Qin1,2, Stephanie M. Ware5, Ronald R. Waclaw1,4 and Kenneth Campbell1,3* Abstract Background: Olfactory bulb (OB) interneurons are known to represent diverse neuronal subtypes, which are thought to originate from a number of telencephalic regions including the embryonic dorsal lateral ganglionic eminence (dLGE) and septum. These cells migrate rostrally toward the OB, where they then radially migrate to populate different OB layers including the granule cell layer (GCL) and the outer glomerular layer (GL). Although previous studies have attempted to investigate regional contributions to OB interneuron diversity, few genetic tools have been used to address this question at embryonic time points when the earliest populations are specified. Methods: In this study, we utilized Zic3-lacZ and Gsx2e-CIE transgenic mice as genetic fate-mapping tools to study OB interneuron contributions derived from septum and LGE, respectively. Moreover, to address the regional (i.e. septal) requirements of the homeobox gene Gsx2 for OB interneuron diversity, we conditionally inactivated Gsx2 in the septum, leaving it largely intact in the dLGE, by recombining the Gsx2 floxed allele using Olig2Cre/+ mice. Results: Our fate mapping studies demonstrated that the dLGE and septum gave rise to OB interneuron subtypes differently. Notably, the embryonic septum was found to give rise largely to the calretinin+ (CR+) GL subtype, while the dLGE was more diverse, generating all major GL subpopulations as well as many GCL interneurons. -
The Genetic Factors of Bilaterian Evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen a Panfilio2,3, Thomas Wiehe1
RESEARCH ARTICLE The genetic factors of bilaterian evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen A Panfilio2,3, Thomas Wiehe1 1Institute for Genetics, Cologne Biocenter, University of Cologne, Cologne, Germany; 2Institute for Zoology: Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany; 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom Abstract The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo- Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship. *For correspondence: [email protected] Introduction The taxon Bilateria consists of multicellular animals -
Early Transcriptional Targets of Myod Link Myogenesis and Somitogenesis
Developmental Biology 371 (2012) 256–268 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Early transcriptional targets of MyoD link myogenesis and somitogenesis Richard J. Maguire, Harry V. Isaacs, Mary Elizabeth Pownall n Biology Department, University of York, Heslington, York, North Yorkshire YO10 5YW, United Kingdom article info abstract Article history: In order to identify early transcriptional targets of MyoD prior to skeletal muscle differentiation, we Received 27 February 2012 have undertaken a transcriptomic analysis on gastrula stage Xenopus embryos in which MyoD has been Received in revised form knocked-down. Our validated list of genes transcriptionally regulated by MyoD includes Esr1 and Esr2, 10 July 2012 which are known targets of Notch signalling, and Tbx6, mesogenin, and FoxC1; these genes are all are Accepted 22 August 2012 known to be essential for normal somitogenesis but are expressed surprisingly early in the mesoderm. Available online 31 August 2012 In addition we found that MyoD is required for the expression of myf5 in the early mesoderm, in Keywords: contrast to the reverse relationship of these two regulators in amniote somites. These data highlight a Skeletal muscle role for MyoD in the early mesoderm in regulating a set of genes that are essential for both myogenesis Gene regulation and somitogenesis. Muscle progenitors & 2012 Elsevier Inc. All rights reserved. Determination Introduction gastrula embryo requires continued cell signals, such as FGF4, to maintain a myogenic fate (Standley et al., 2001), however, a single In vertebrates, the myogenic regulatory genes myoD, myf5, cell taken from a late gastrula embryo behaves as a determined myogenin, and mrf4 code for bHLH transcription factors which are myoblast: when transplanted to a ventral region, it differentiates expressed specifically in the myogenic cell lineage. -
PBX Proteins: Much More Than Hox Cofactors Audrey Laurent, Réjane Bihan, Francis Omilli, Stéphane Deschamps, Isabelle Pellerin
PBX proteins: much more than Hox cofactors Audrey Laurent, Réjane Bihan, Francis Omilli, Stéphane Deschamps, Isabelle Pellerin To cite this version: Audrey Laurent, Réjane Bihan, Francis Omilli, Stéphane Deschamps, Isabelle Pellerin. PBX proteins: much more than Hox cofactors. International Journal of Developmental Biology, University of the Basque Country Press, 2008, 52 (1), pp.9-20. 10.1387/ijdb.072304al. hal-00278747 HAL Id: hal-00278747 https://hal.archives-ouvertes.fr/hal-00278747 Submitted on 11 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Int. J. Dev. Biol. 52: 9-20 (2008) DEVELOPMENTALTHE INTERNATIONAL JOURNAL OF doi: 10.1387/ijdb.072304al BIOLOGY www.intjdevbiol.com PBX proteins: much more than Hox cofactors AUDREY LAURENT, RÉJANE BIHAN, FRANCIS OMILLI, STÉPHANE DESCHAMPS and ISABELLE PELLERIN* IGDR, UMR CNRS 6061, Génétique et Développement, IFR 140, Faculté de Médecine, Université de Rennes 1, France ABSTRACT Pre-B cell leukaemia transcription factors (PBXs) were originally identified as Hox cofactors, acting within transcriptional regulation complexes to regulate genetic programs during development. Increasing amount of evidence revealed that PBX function is not restricted to a partnership with Hox or homeodomain proteins.