Voronoi and Delaunay Diagrams

Total Page:16

File Type:pdf, Size:1020Kb

Voronoi and Delaunay Diagrams An Introduction to Computational Geometry: Voronoi and Delaunay Diagrams Joseph S. B. Mitchell Stony Brook University Chapters 3,4: Devadoss-O’Rourke Voronoi Diagrams Georgy Voronoi 1868-1908 Historical Origins and Diagrams in Nature René Descartes 1596-1650 1644: Gravitational Dragonfly wing Influence of stars Giraffe pigmentation Honeycomb 3 Ack: Streinu&Brock Constrained soap bubbles http://uxblog.idvsolutions.com/2011/07/chalkboard-maps-united-states-of.html Craigslist Map “A geometric pass at delineating areas within the United States potentially covered by each craigslist site -the United States of Craigslist.” Source: idvsolutions.com 4 Voronoi USA 5 (source: http://www.reddit.com/r/MapPorn/comments/1hi07c/voronoi_map_thiessen_polygons_of_the_usa_based_on/) Voronoi Applications Voronoi, together with point location search: nearest neighbor queries Facility location: Largest empty disk (centered at a Voronoi vertex) Shape description/approximation: medial axis [Lecture 12, David Mount 6 notes] Starbucks Post Office Problem Query point Post offices Voronoi Diagram Partition the plane according to the equivalence classes: V(Q) = { (x,y) : the closest sites of S to (x,y) is exactly the set Q S } • |Q| = 1 Voronoi cells (2-faces) • |Q| = 2 Voronoi edges (1-faces) • |Q| 3 Voronoi vertices (0-faces) Q cocircular Voronoi cell of pi is open, convex 8 “cell complex” Example p p Voronoi cell of p 9 Delaunay Diagram Join pi to pj iff there is an “empty circle” A witness to the through pi and pj Delaunayhood of (pi , pj) If no 4 points cocircular pi (degenerate), then pj Delaunay diagram is a (very special) triangulation. Equivalent definition: “Dual” of the Voronoi diagram Applet [Chew] 10 Voronoi/Delaunay 11 Delaunay: An Important, Practical Triangulation Application: Piecewise-linear terrain surface interpolation 12 Terrain Interpolation from Point Sample Data 13 Delaunay: An Important, Practical Triangulation Application: Piecewise-linear terrain surface interpolation 14 Delaunay: An Important, Practical Triangulation Application: Piecewise-linear terrain surface interpolation 15 Delaunay for Terrain Interpolation 16 Voronoi and Delaunay 17 Voronoi and Delaunay 18 Delaunay’s Theorem 19 Delaunay’s Theorem 20 Voronoi and Delaunay Properties The planar dual of Voronoi, drawn with nodes at the sites, edges straight segments, has no crossing edges [Delaunay]. It is the Delaunay diagram, D(S) (defined by empty circle property). Combinatorial size: 3n-6 Voronoi/Delaunay edges; 2n-5 Voronoi vertices (Delaunay faces) O(n) A Voronoi cell is unbounded iff its site is on the boundary of CH(S) CH(S) = boundary of unbounded face of D(S) Delaunay triangulation lexico-maximizes the angle vector among all triangulations • In particular, maximizes the min angle 21 22 Angle Sequence of a Triangulation 23 Angle Sequence of a Triangulation 24 Legal Edges, Triangulations 25 Edge Flips (Swaps) 26 Geometry of Circles/Triangles Thale’s Theorem 27 Legal/Illegal Edges Equivalent: • alpha2 + alpha6 > pi • InCircle(pi ,pk ,pj ,pl ) 28 Legal/Illegal Edges 29 Algorithm: Legalize Triangulation 30 Example: 4 points 31 Voronoi and Delaunay Properties In any partition of S, S=B R, into blue/red points, any blue-red pair that is shortest B-R bridge is a Delaunay edge. Corollaries: • D(S) is connected • MST D(S) (MST=“min spanning tree”) • NNG D(S) (NNG=“nearest neighbor graph”) 32 Voronoi and Delaunay Properties In any partition of S, S=B R, into blue/red points, any blue-red pair that is shortest B-R bridge is a Delaunay edge. • D(S) is connected • MST D(S) (MST=“min spanning tree”) • NNG D(S) (NNG=“nearest neighbor graph”) Voronoi/Delaunay can be built in time O(n log n) • Divide and conquer • Sweep • Randomized incremental VoroGlide applet 33 Nearest Neighbor Graph: NNG Directed graph NNG(S): 34 Minimum Spanning Tree; MST Greedy algorithms: • Prim: grows a tree • Kruskal: grows a forest: O(e log v) 35 Euclidean MST One way to compute: Apply Prim or Kruskal to the complete graph, with edges weighted by their Euclidean lengths: O(n2 log n) Better: Exploit the fact that MST is a subgraph of the Delaunay (which has size O(n)): • Apply Prim/Kruskal to the Delaunay: O(n log n), since e = O(n) 36 Euclidean MST 37 Traveling Salesperson Problem: TSP 39 Approximation Algorithms PTAS for Geometric TSP Voronoi Applet VoroGlide applet 42 Voronoi and Delaunay: 1D Easy: Just sort the sites along the line Delaunay is a path Voronoi is a partition of the line into intervals Time: O(n log n) Lower bound: (n log n), since the Delaunay gives the sorted order of the input points, {x1 , x2 , x3 ,…} 43 Voronoi and Delaunay: 2D Algorithms Naïve O(n2 log n) algorithm: Build Voronoi cells one by one, solving n halfplane intersection problems (each in O(n log n), using divide-and-conquer) Incremental: worst-case O(n2) Divide and conquer (first O(n log n)) Lawson Edge Swap (“Legalize”): Delaunay Randomized Incremental (expected O(n log n)) Sweep [Fortune] Any algorithm that computes CH in R3 , 44 e.g., QHull Qhull website 45 Delaunay: Edge Flip Algorithm Lawson Edge Swap “Legalize” [BKOS] Assume: No 4 co-circular points, for simplicity. Start with any triangulation d Keep a list (stack) of “illegal” edges: b • ab is illegal if InCircle(a,c,b,d) Locally non-Delauany • iff the smallest of the 6 angles goes up if flip a c Flip any illegal edge; update legality status of neighboring edges Continue until no illegal edges Theorem: A triangulation is Delaunay iff there are no illegal edges (i.e., it is “locally Delaunay”) Only O(n2 ) flips needed. 46 Connection to Convex Hulls in 3D Delaunay diagram lower convex hull of 2 2 the lifted sites, (xi , yi , xi +yi ), on the paraboloid of revolution, z=x2 + y2 Upper hull “furthest site Delaunay” 3D CH applet 47 48 49 Delaunay in 2D is Convex Hull in 3D 50 Delaunay in 2D is Convex Hull in 3D 51 Voronoi and Delaunay Algorithms: • Straightforward incremental: O(n2 ) • Divide and conquer (first O(n log n)) • Sweep • Randomized incremental • Any algorithm that computes CH in R3 , e.g., QHull Qhull website 52 Straightforward Incremental Algorithm: Voronoi 53 Straightforward Incremental Algorithm: Voronoi 54 Fortune’s Sweep Algorithm AMS 545 / CSE 555 55 Applet Ack: Guibas&Stolfi Parabolic Front AMS 545 / CSE 555 56 Applet Ack: Guibas&Stolfi Site Events a) b) c) AMS 545 / CSE 555 57 Applet Ack: Guibas&Stolfi Circle Events AMS 545 / CSE 555 58 Applet Ack: Guibas&Stolfi Scheduling Circle Events AMS 545 / CSE 555 59 Applet Ack: Guibas&Stolfi 60 61 Incremental Construction Add sites one by one, modifying the Delaunay (Voronoi) as we go: • Join vi to 3 corners of triangle containing it • Do edge flips to restore local Delaunayhood If added in random order, simple “Backwards analysis” shows expected time O(n log n) [Guibas, Knuth, Sharir] AMS 545 / CSE 555 62 Example CS691G Computational Geometry - UMass 63 Amherst Voronoi Extensions Numerous ! [see Okabe, Boots, Sugihara, Chiu] Different metrics Higher dimensions: • Delaunay in Rd lower CH in Rd+1 • O( n log n + n (d+1)/2 ) Order-k, furthest-site Other sites: Voronoi of polygons, “medial axis” Additive/multiplicative weights; power diagram -shapes: a powerful shape representation 64 GeoMagic, biogeometry at Duke Furthest Site Voronoi 65 Medial Axis: Convex Polygon 66 Medial Axis: Convex Polygon 67 Medial Axis: Nonconvex Polygon 68 Medial Axis: Curved Domain 69 Straight Skeleton 70 VRONI: Fast, robust Voronoi of polygonal domains Incremental algorithm 71 72 Computing offsets with a Voronoi diagram 73 Alpha Shapes, Hulls “Erase” with a ball of radius to get -shape. Straighten edges to get -hull 74 75 -Shapes Theorem: For each Delaunay edge, e=(pi,pj), there exists min(e)>0 and max(e)>0 such that e -shape of S iff min(e) max(e). Thus, every alpha-hull edge is in the Delaunay, and every Delaunay edge is in some alpha-shape. Applet .
Recommended publications
  • Medial Axis Transform Using Ridge Following
    Missouri University of Science and Technology Scholars' Mine Computer Science Technical Reports Computer Science 01 Aug 1987 Medial Axis Transform using Ridge Following Richard Mark Volkmann Daniel C. St. Clair Missouri University of Science and Technology Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports Part of the Computer Sciences Commons Recommended Citation Volkmann, Richard Mark and St. Clair, Daniel C., "Medial Axis Transform using Ridge Following" (1987). Computer Science Technical Reports. 80. https://scholarsmine.mst.edu/comsci_techreports/80 This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. MEDIAL AXIS TRANSFORM USING RIDGE FOLLOWING R. M. Volkmann* and D. C. St. Clair CSc 87-17 *This report is substantially the M.S. thesis of the first author, completed, August 1987 Page iii ABSTRACT The intent of this investigation has been to find a robust algorithm for generation of the medial axis transform (MAT). The MAT is an invertible, object centered, shape representation defined as the collection of the centers of disks contained in the shape but not in any other such disk. Its uses include feature extraction, shape smoothing, and data compression. MAT generating algorithms include brushfire, Voronoi diagrams, and ridge following. An improved implementation of the ridge following algorithm is given. Orders of the MAT generating algorithms are compared.
    [Show full text]
  • Computing 2D Periodic Centroidal Voronoi Tessellation Dong-Ming Yan, Kai Wang, Bruno Lévy, Laurent Alonso
    Computing 2D Periodic Centroidal Voronoi Tessellation Dong-Ming Yan, Kai Wang, Bruno Lévy, Laurent Alonso To cite this version: Dong-Ming Yan, Kai Wang, Bruno Lévy, Laurent Alonso. Computing 2D Periodic Centroidal Voronoi Tessellation. 8th International Symposium on Voronoi Diagrams in Science and Engineering - ISVD2011, Jun 2011, Qingdao, China. 10.1109/ISVD.2011.31. inria-00605927 HAL Id: inria-00605927 https://hal.inria.fr/inria-00605927 Submitted on 5 Jul 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computing 2D Periodic Centroidal Voronoi Tessellation Dong-Ming Yan Kai Wang Bruno Levy´ Laurent Alonso Project ALICE, INRIA Project ALICE, INRIA Project ALICE, INRIA Project ALICE, INRIA Nancy, France / Gipsa-lab, CNRS Nancy, France Nancy, France [email protected] Grenoble, France [email protected] [email protected] [email protected] Abstract—In this paper, we propose an efficient algorithm to compute the centroidal Voronoi tessellation in 2D periodic space. We first present a simple algorithm for constructing the periodic Voronoi diagram (PVD) from a Euclidean Voronoi diagram. The presented PVD algorithm considers only a small set of periodic copies of the input sites, which is more efficient than previous approaches requiring full copies of the sites (9 in 2D and 27 in 3D).
    [Show full text]
  • Voronoi Diagrams--A Survey of a Fundamental Geometric Data Structure
    Voronoi Diagrams — A Survey of a Fundamental Geometric Data Structure FRANZ AURENHAMMER Institute fur Informationsverarbeitung Technische Universitat Graz, Sch iet!stattgasse 4a, Austria This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures. Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems–geometrical problems and computations; G. 2.1 [Discrete Mathematics]: Combinatorics— combinatorial algorithms; I. 3.5 [Computer Graphics]: Computational Geometry and Object Modeling—geometric algorithms, languages, and systems General Terms: Algorithms, Theory Additional Key Words and Phrases: Cell complex, clustering, combinatorial complexity, convex hull, crystal structure, divide-and-conquer, geometric data structure, growth model, higher dimensional embedding, hyperplane arrangement, k-set, motion planning, neighbor searching, object modeling, plane-sweep, proximity, randomized insertion, spanning tree, triangulation INTRODUCTION [19841 and to the textbooks by Preparata and Shames [1985] and Edelsbrunner Computational geometry is concerned [1987bl.) with the design and analysis of algo- Readers familiar with the literature of rithms for geometrical problems. In add- computational geometry will have no- ition, other more practically oriented, ticed, especially in the last few years, an areas of computer science— such as com- increasing interest in a geometrical con- puter graphics, computer-aided design, struct called the Voronoi diagram.
    [Show full text]
  • Quadratic Serendipity Finite Elements on Polygons Using Generalized Barycentric Coordinates
    MATHEMATICS OF COMPUTATION Volume 83, Number 290, November 2014, Pages 2691–2716 S 0025-5718(2014)02807-X Article electronically published on February 20, 2014 QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES ALEXANDER RAND, ANDREW GILLETTE, AND CHANDRAJIT BAJAJ Abstract. We introduce a finite element construction for use on the class of convex, planar polygons and show that it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n +1)/2 basis functions known to obtain quadratic convergence. This technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform apriorierror estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. 1. Introduction Barycentric coordinates provide a basis for linear finite elements on simplices, and generalized barycentric coordinates naturally produce a suitable basis for linear finite elements on general polygons. Various applications make use of this tech- nique [15, 16, 25, 26, 28, 30, 32–34, 37], but in each case, only linear error estimates can be asserted. A quadratic finite element can easily be constructed by taking pairwise products of the basis functions from the linear element, yet this approach has not been pursued, primarily since the requisite number of basis functions grows quadratically in the number of vertices of the polygon.
    [Show full text]
  • Report No. 17/2005
    Mathematisches Forschungsinstitut Oberwolfach Report No. 17/2005 Discrete Geometry Organised by Martin Henk (Magdeburg) Jiˇr´ıMatouˇsek (Prague) Emo Welzl (Z¨urich) April 10th – April 16th, 2005 Abstract. The workshop on Discrete Geometry was attended by 53 par- ticipants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Introduction by the Organisers The Discrete Geometry workshop was attended by 53 participants from a wide range of geographic regions, many of them young researchers (some supported by a grant from the European Union). The morning sessions consisted of survey talks providing an overview of recent developments in Discrete Geometry: Extremal problems concerning convex lattice polygons. (Imre B´ar´any) • Universally optimal configurations of points on spheres. (Henry Cohn) • Polytopes, Lie algebras, computing. (Jes´us A. De Loera) • On incidences in Euclidean spaces. (Gy¨orgy Elekes) • Few-distance sets in d-dimensional normed spaces. (Zolt´an F¨uredi) • On norm maximization in geometric clustering. (Peter Gritzmann) • Abstract regular polytopes: recent developments. (Peter McMullen) • Counting crossing-free configurations in the plane. (Micha Sharir) • Geometry in additive combinatorics. (J´ozsef Solymosi) • Rigid components: geometric problems, combinatorial solutions. (Ileana • Streinu) Forbidden patterns. (J´anos Pach) • 926 Oberwolfach Report 17/2005 Projected polytopes, Gale diagrams, and polyhedral surfaces. (G¨unter M. • Ziegler) What is known about unit cubes? (Chuanming Zong) • There were 16 shorter talks in the afternoon, an open problem session chaired by Jes´us De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cin- derella (J¨urgen Richter-Gebert).
    [Show full text]
  • Are Voronoi Tessellations Whose Generators Coincide with the Mass Centroids of the Respective Voronoi Regions
    INTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing and Information Volume 9, Number 4, Pages 950{969 PERIODIC CENTROIDAL VORONOI TESSELLATIONS JINGYAN ZHANG, MARIA EMELIANENKO, AND QIANG DU (Communicated by Steve L. Hou) Abstract. Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations whose generators coincide with the mass centroids of the respective Voronoi regions. CVTs have become useful tools in many application domains of arts, sciences and engineering. In this work, for the first time the concept of the periodic centroidal Voronoi tessellations (PCVTs) - CVTs that exhibit certain periodicity properties in the Euclidean space - is introduced and given a rigorous treatment. We discuss the basic mathematical structures of the PCVTs and show how they are related to the so- called CVT clustering energy. We demonstrate by means of a concrete example that the clustering energy can lose smoothness at degenerate points which disproves earlier conjectures about the CVT energy being globally C2-smooth. We discuss a number of algorithms for the computation of PCVTs, including modifications of the celebrated Lloyd algorithm and a recently developed algorithm based on the shrinking dimer dynamics for saddle point search. As an application, we present a catalog of numerically computed PCVT patterns for the two dimensional case with a constant density and a square unit cell. Examples are given to demonstrate that our algorithms are capable of effectively probing the energy surface and produce improved patterns that may be used for optimal materials design. The numerical results also illustrate the intrinsic complexity associated with the CVT energy landscape and the rich geometry and symmetry represented by the underlying PCVTs.
    [Show full text]
  • CAD Tools for Creating Space-Filling 3D Escher Tiles
    CAD Tools for Creating Space-filling 3D Escher Tiles Mark Howison Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-56 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-56.html May 1, 2009 Copyright 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. CAD Tools for Creating Space-filling 3D Escher Tiles by Mark Howison Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor Carlo H. Sequin´ Research Advisor (Date) ******* Professor Jonathan R. Shewchuk Second Reader (Date) CAD Tools for Creating Space-filling 3D Escher Tiles Mark Howison Computer Science Division University of California, Berkeley [email protected] May 1, 2009 Abstract We discuss the design and implementation of CAD tools for creating dec- orative solids that tile 3-space in a regular, isohedral manner. Isohedral tilings of the plane, as popularized by M. C. Escher, can be constructed by hand or using existing tools on the web. Specialized CAD tools have also been devel- oped for tiling other 2-manifolds.
    [Show full text]
  • Stability of Statics Aware Voronoi Grid-Shells Engineering Structures
    Engineering Structures 116 (2016) 70–82 Contents lists available at ScienceDirect Engineering Structures journal homepage: www.elsevier.com/locate/engstruct Stability of Statics Aware Voronoi Grid-Shells ⇑ D. Tonelli a, , N. Pietroni b, E. Puppo c, M. Froli a, P. Cignoni b, G. Amendola d, R. Scopigno b a University of Pisa, Department DESTeC, Pisa, Italy b VCLab, CNR-ISTI, Pisa, Italy c University of Genova, Department Dibris, Genova, Italy d University eCampus, Via Isimbardi 10, 22060 Novedrate, CO, Italy article info abstract Article history: Grid-shells are lightweight structures used to cover long spans with few load-bearing material, as they Received 5 January 2015 excel for lightness, elegance and transparency. In this paper we analyze the stability of hex-dominant Revised 6 December 2015 free-form grid-shells, generated with the Statics Aware Voronoi Remeshing scheme introduced in Accepted 29 February 2016 Pietroni et al. (2015). This is a novel hex-dominant, organic-like and non uniform remeshing pattern that manages to take into account the statics of the underlying surface. We show how this pattern is partic- ularly suitable for free-form grid-shells, providing good performance in terms of both aesthetics and Keywords: structural behavior. To reach this goal, we select a set of four contemporary architectural surfaces and Grid-shells we establish a systematic comparative analysis between Statics Aware Voronoi Grid-Shells and equiva- Topology Voronoi lent state of the art triangular and quadrilateral grid-shells. For each dataset and for each grid-shell topol- Free-form ogy, imperfection sensitivity analyses are carried out and the worst response diagrams compared.
    [Show full text]
  • On Surface Geometry Inspired by Natural Systems in Current Architecture
    THE JOURNAL OF POLISH SOCIETY FOR GEOMETRY AND ENGINEERING GRAPHICS VOLUME 29 Gliwice, December 2016 Editorial Board International Scientific Committee Anna BŁACH, Ted BRANOFF (USA), Modris DOBELIS (Latvia), Bogusław JANUSZEWSKI, Natalia KAYGORODTSEVA (Russia), Cornelie LEOPOLD (Germany), Vsevolod Y. MIKHAILENKO (Ukraine), Jarosław MIRSKI, Vidmantas NENORTA (Lithuania), Pavel PECH (Czech Republic), Stefan PRZEWŁOCKI, Leonid SHABEKA (Belarus), Daniela VELICHOVÁ (Slovakia), Krzysztof WITCZYŃSKI Editor-in-Chief Edwin KOŹNIEWSKI Associate Editors Renata GÓRSKA, Maciej PIEKARSKI, Krzysztof T. TYTKOWSKI Secretary Monika SROKA-BIZOŃ Executive Editors Danuta BOMBIK (vol. 1-18), Krzysztof T. TYTKOWSKI (vol. 19-29) English Language Editor Barbara SKARKA Marian PALEJ – PTGiGI founder, initiator and the Editor-in-Chief of BIULETYN between 1996-2001 All the papers in this journal have been reviewed Editorial office address: 44-100 Gliwice, ul. Krzywoustego 7, POLAND phone: (+48 32) 237 26 58 Bank account of PTGiGI : Lukas Bank 94 1940 1076 3058 1799 0000 0000 ISSN 1644 - 9363 Publication date: December 2016 Circulation: 100 issues. Retail price: 15 PLN (4 EU) The Journal of Polish Society for Geometry and Engineering Graphics Volume 29 (2016), 41 - 51 41 ON SURFACE GEOMETRY INSPIRED BY NATURAL SYSTEMS IN CURRENT ARCHITECTURE Anna NOWAK1/, Wiesław ROKICKI2/ Warsaw University of Technology, Faculty of Architecture, Department of Structural Design, Building Structure and Technical Infrastructure, ul. Koszykowa 55, p. 214, 00-659 Warszawa, POLAND 1/ e-mail:[email protected] 2/e-mail: [email protected] Abstract. The contemporary architecture is increasingly inspired by the evolution of the biomimetic design. The architectural form is not only limited to aesthetics and designs found in nature, but it also embraced with natural forming principles, which enable the design of complex, optimized spatial structures in various respects.
    [Show full text]
  • Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons
    Shape and symmetry determine two-dimensional melting transitions of hard regular polygons 1 2 3 1, 4 1, 2, 3, 5, Joshua A. Anderson, James Antonaglia, Jaime A. Millan, Michael Engel, and Sharon C. Glotzer ∗ 1Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA 2Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA 4Institute for Multiscale Simulation, Friedrich-Alexander-Universit¨atErlangen-N¨urnberg, 91058 Erlangen, Germany 5Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA The melting transition of two-dimensional (2D) systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computa- tional resources and algorithms. 2D systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and thus predicting how any given 2D system will behave remains a challenge. Here we report a comprehensive simulation study of the phase behavior near the melting transition of all hard reg- ular polygons with 3 ≤ n ≤ 14 vertices using massively parallel Monte Carlo simulations of up to one million particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n. We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the fluid phase.
    [Show full text]
  • Eindhoven University of Technology MASTER Lateral Stiffness Of
    Eindhoven University of Technology MASTER Lateral stiffness of hexagrid structures de Meijer, J.H.M. Award date: 2012 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain ‘Lateral Stiffness of Hexagrid Structures’ - Master’s thesis – - Main report – - A 2012.03 – - O 2012.03 – J.H.M. de Meijer 0590897 July, 2012 Graduation committee: Prof. ir. H.H. Snijder (supervisor) ir. A.P.H.W. Habraken dr.ir. H. Hofmeyer Eindhoven University of Technology Department of the Built Environment Structural Design Preface This research forms the main part of my graduation thesis on the lateral stiffness of hexagrids. It explores the opportunities of a structural stability system that has been researched insufficiently.
    [Show full text]
  • Efficient Computation of Clipped Voronoi Diagram for Mesh Generation
    Efficient Computation of Clipped Voronoi Diagram for Mesh Generation Dong-Ming Yana,b,c, Wenping Wanga, Bruno L´evyb, Yang Liub,d aDepartment of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong bProject ALICE, INRIA/LORIA, Campus scientifique 615, rue du Jardin Botanique, 54600, Villers les Nancy, France cGeometric Modeling and Scientific Visualization Center, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia dMicrosoft Research Asia, Building 2, No. 5 Danling Street, Haidian District, Beijing, 100800, P.R. China Abstract The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Keywords: clipped Voronoi diagram, Delaunay triangulation, centroidal Voronoi tessellation, mesh generation. 1. Introduction computing the clipped Voronoi diagram with re- spect to a complicated input domain is a difficult The Voronoi diagram is a fundamental geometric problem and there is no efficient solution in the ex- structure which has numerous applications in var- isting literature.
    [Show full text]