Power Macintosh 4400
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nubus Physical Designs
Macintosh Technical Notes ® Developer Technical Support #234: NuBus Physical Designs—Beware Revised by: Rich Collyer December 1989 Written by: Rich Collyer June 1989 This Technical Note discusses the possible problems you might run into while designing a NuBus™ card. It covers some of the specifications which, if not followed, will have problems with current Macintosh machines, and possibly future machines. Changes since June 1989: Added warnings about the no component area and full-size NuBus cards. If you are making a NuBus card for the Macintosh II family of computers, then you have to be very careful to follow the physical specifications which are listed in the NuBus specifications (IEEE P1196). There are two areas where some developers have run into problems. The first problem has to do with not positioning the external connector properly. The result is that some products have problems with the external hole on the back of the Macintosh IIcx. The second problem has to do with developers who run ribbon cables over the top of their boards to connect two boards. If a slot is not cut into the top of the board to allow the ribbon cable to sit below the top of the card, then the boards will have problems in our machines. External Connector The NuBus specification allows for an external connector plastics opening of only 74.55 mm x 11.90 mm. The Macintosh II and IIx allowed a significantly larger hole than the specification (80.00 mm x 17.00 mm) and some developers incorrectly assumed that Apple would continue to allow for this larger size. -
Dell EMC Openmanage CIM Reference Guide Version 9.1 Notes, Cautions, and Warnings
Dell EMC OpenManage CIM Reference Guide Version 9.1 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2017 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2017 - 12 Rev. A00 Contents 1 Introduction....................................................................................................................................................6 Server Administrator..........................................................................................................................................................6 Documenting CIM Classes and Their Properties........................................................................................................... 6 Base Classes................................................................................................................................................................. 7 Parent Classes.............................................................................................................................................................. 7 Classes That Describe Relationships........................................................................................................................ -
Designing PCI Cards and Drivers for Power Macintosh Computers
Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages. -
Power Macintosh 6100/ WS 6150
K Service Source Power Macintosh 6100/ WS 6150 Power Macintosh 6100/60, 6100/60AV, 6100/66, 6100/66AV, 6100/DOS Compatible, and Workgroup Server 6150 K Service Source Basics Power Macintosh 6100/WS 6150 Basics Power Macintosh System Overview - 1 Power Macintosh System Overview PowerPC microprocessors are a family of processors built on reduced instruction-set computing (RISC) technology. RISC processors streamline the internal workings of computers. Whereas traditional (complex instruction-set computing, or CISC) processors contain a wide variety of instructions to handle many different tasks, RISC processors contain only those instructions that are used most often. When a complex instruction is needed, a RISC processor builds it from a combination of basic instructions. RISC processors are designed to execute these basic instructions extremely quickly. The performance gains achieved by speeding up the most-used instructions more than compensate for the time spent creating less-used instructions. Basics Power Macintosh System Overview - 2 Previously, RISC technology had been used only in high-end workstations and commercial database servers. With the introduction of Macintosh PowerPC computers, Apple succeeded in bringing RISC technology to personal computing. Key Points Three key points to remember about a PowerPC processor- based Macintosh system: It's a Macintosh; it's compatible; it offers tremendous performance. Apple's PowerPC computers feature the same user interface as their 680x0-based predecessors. Users can mix RISC- based and 680x0-based Macintosh systems on the same net- work and exchange files and disks between them. In addition, users can run both 680x0 and native PowerPC applications on the same Power Macintosh system simultaneously. -
Power Macintosh 9500 Series
K Service Source Power Macintosh 9500 Series Power Macintosh 9500/120, 9500/132, 9500/150, 9500/180MP, and 9500/200 K Service Source Basics Power Macintosh 9500 Series Basics Overview - 1 Overview The Power Macintosh 9500 Series computers are based on the PowerPC 604 microprocessor and support the industry-standard PCI (Peripheral Component Interconnect) bus specification. These computers are the most flexible, expandable, and highest-performance systems from Apple to date. The microprocessor for the Power Macintosh 9500 Series computers is on separate plug-in card, which allows for easy upgrades. The Power Macintosh 9500 family includes five versions: the 9500/120, the 9500/132, the 9500/150, the 9500/180MP (multi-processor), and the 9500/200. Basics Overview - 2 Features of the Power Macintosh 9500 Series include • 120, 132, 150, 180 (multi-processor) or 200 MHz PowerPC 604 microprocessor card with built-in FPU • Six PCI expansion slots • 10 MB per second internal SCSI channel, 5 MB per second external SCSI channel • 512K Level 2 cache • DRAM expansion up to 1536 MB using 168-pin, 70 ns, 64-bit DIMMs • A PCI Apple Accelerated Graphics card included with some configurations (the Power Macintosh 9500 Series does not include on-board video support) • Built-in AAUI and 10BASE-T Ethernet • AppleCD™ 600i 4x or1200i 8x CD-ROM drive • CD-quality stereo sound in/out • Mac™ OS system software 7.5.2, 7.5.3, or 7.5.3 Revision 2 Basics Configurations - 3 Configurations The Power Macintosh 9500/120 comes standard with • 120 MHz PowerPC 604 processor -
USB Converter MT606 Series
USB Converter MT606 Series FEATURES: Use with Keyboard Wedge Scanners Use with Keyboard and Mouse PS/2 and MAC-ADB Port Powered by PC or MAC Connect/Disconnect Without Reboot Plug and Play No Software Needed DESCRIPTION: The MT606 Series USB Converters provide an easy solution for converting existing peripherals, such as keyboards, pointing devices and barcode scanners, to Universal Serial Bus. Models are available to work with both PS/2 and Macintosh devices. As with all USB devices, the converter can be connected and disconnected without re-booting or powering down the computer. Each model has two ports. The MT606-4 has one PS/2 port and one Macintosh ADB (Apple Desktop Bus) port. The MT606-1 has one PS/2 keyboard port and one PS/2 Mouse port. TYPICAL APPLICATIONS: The MT606 converter will enable keyboards, pointing devices (mouse, trackball), and conventional barcode scanners with keyboard wedge interfaces, to be used with computers that feature the newer Universal Serial BUS. At present, newer PCs with the Windows® 98 and Windows 2000 operating systems, feature USB Ports. The Apple iMac, iBook, G3 and G4 use Universal Serial Bus for interfacing to external devices. The Model MT606-1 can accept inputs from a PS/2 Pointing Device and a PS/2 Keyboard or Barcode Scanner. The MT606-4 can accept inputs from a PS/2 keyboard or barcode scanner and any Macintosh ADB device, including Keyboard, Pointing Device or Barcode Scanner. SPECIFICATIONS: Dimensions: 2.2" X 1.5" X 0.85" Operating Voltage: 5VDC derived from USB 56mm X 40mm X 22mm connector. -
PCI Local Bus Specification Revision 3.0 June 2002Junedecember 5February 3, 20043 28, 2002
PCI Local Bus Specification Revision 3.0 June 2002JuneDecember 5February 3, 20043 28, 2002 PCI LOCAL BUS SPECIFICATION, REV. 3.0 PCI SPECIFICATIONS REVISION REVISION HISTORY DATE 1.0 Original issue. 6/22/92 2.0 Incorporated connector and add-in card specification. 4/30/93 2.1 Incorporated clarifications and added 66 MHz chapter. 6/1/95 2.2 Incorporated ECNs and improved readability. 12/18/98 2.3 Incorporated ECNs, errata, and deleted 5 volt only keyed 3/29/02 add-in cards. 3.0 Incorporated ECNs, errata, and Rremoved support for the 212/305/ 5.0 volt keyed system board connector. Moved the 043 Expansion ROM description to the PCI Firmware Specification. The PCI Special Interest Group-SIG disclaims all warranties and liability for the use of this document and the information contained herein and assumes no responsibility for any errors that may appear in this document, nor does the PCI-SIG Special Interest Group make a commitment to update the information contained herein. Contact the PCI-SIG Special Interest Group office to obtain the latest revision of the specification. Questions regarding the PCI specification or membership in the PCI-SIG Special Interest Grou may be forwarded to: PCI-SIG Special Interest Group 5440 SW Westgate Drive Suite 217 Portland, Oregon 97221 Phone: 800-433-5177 (Inside the U.S.) 503-291-2569 (Outside the U.S.) Fax: 503-297-1090 e-mail [email protected] http://www.pcisig.com DISCLAIMER This PCI Local Bus Specification is provided "“as is" ” with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample. -
LL5200 ISA to Vmebus LINK
LL5200 ISA to VMEbus LINK FEATURES · High speed bus to bus link · Fiber Optic or Coax Cable · Up to 2Km system separation · Programmable address windows · Symmetrical Master/Slave operation · Both busses run independently · Remote Reset Function · 16/24/32 Bit VME, 24 Bit ISA addresses · Programmable byte swapping · VMEbus system controller functions SUMMARY APPLICATIONS LL5200 is an ISA to VMEbus link that allows the physical LL5200 and other Lextel Bus Links are being used to solve address space of an ISA bus based computer (PC/AT) to be these kinds of problems: mapped into that of the VMEbus, and vice-versa. Bus masters on either bus can have direct, random access to the other bus. BUS EXTENSION: When equipment needs to be Remote memory and IO devices appear to be within the local connected up to 2Km apart without machine, even though they may be physically located up to loss of throughput. 2Km away. BUS CONVERSION: When one bus architecture needs to Up to 4096 VMEbus address segments, or 'windows', can be be used with another. mapped into the ISA Bus address space. A single window of ISA address space can be mapped into the VMEbus. The size BUS EXPANSION: When more bus slots are needed and base address of the ISA window is programmable. In addition, the addresses can be translated as they pass across NOISE IMMUNITY: Fiber optics are immune to EMI, RFI the link. and crosstalk. Unlike a simple bus repeater, the LL5200 does not tie up both HIGH SPEED DATA: When a standard LAN isn't fast systems when one is in use. -
Power Macintosh 6100/ WS 6150
K Service Source Power Macintosh 6100/ WS 6150 Power Macintosh 6100/60, 6100/60AV, 6100/66, 6100/66AV, 6100/DOS Compatible, and Workgroup Server 6150 K Service Source Basics Power Macintosh 6100/WS 6150 Basics Power Macintosh System Overview - 1 Power Macintosh System Overview PowerPC microprocessors are a family of processors built on reduced instruction-set computing (RISC) technology. RISC processors streamline the internal workings of computers. Whereas traditional (complex instruction-set computing, or CISC) processors contain a wide variety of instructions to handle many different tasks, RISC processors contain only those instructions that are used most often. When a complex instruction is needed, a RISC processor builds it from a combination of basic instructions. RISC processors are designed to execute these basic instructions extremely quickly. The performance gains achieved by speeding up the most-used instructions more than compensate for the time spent creating less-used instructions. Basics Power Macintosh System Overview - 2 Previously, RISC technology had been used only in high-end workstations and commercial database servers. With the introduction of Macintosh PowerPC computers, Apple succeeded in bringing RISC technology to personal computing. Key Points Three key points to remember about a PowerPC processor- based Macintosh system: It's a Macintosh; it's compatible; it offers tremendous performance. Apple's PowerPC computers feature the same user interface as their 680x0-based predecessors. Users can mix RISC- based and 680x0-based Macintosh systems on the same net- work and exchange files and disks between them. In addition, users can run both 680x0 and native PowerPC applications on the same Power Macintosh system simultaneously. -
PC Compatibility Cards
K Service Source PC Compatibility Cards 7" 100 MHz Card, 12" 100 MHz Card, 12" 166-P Card, and 12" PR166 Card K Service Source Basics PC Compatibility Cards Basics Overview - 1 Overview The PC compatibility cards are for use with Power Macintosh models having peripheral component interface (PCI) expansion slots. They allow MS-DOS and Windows applications to run directly on a Power Macintosh computer. There are several types of Apple PC Compatibility cards, and installation procedures differ for each: • 12-inch 100 MHz card: features a 100-MHz Pentium processor • 7-inch 100-MHz card: features a 100 MHz 5x86 processor • 12-inch 166 MHz-P card: features a 166 MHz Pentium processor • 12-inch PR166 card: features a 166 performance rated (PR) 6x86 processor Basics Overview - 2 With each of these cards, the PowerPC processor operates independently of the processor on the PC Compatibility Card so that Macintosh and MS-DOS or Windows applications can run concurrently. Basics General Compatibility Information - 3 General Compatibility Information The original 100 MHz PC compatibility cards (7-inch and 12-inch) are compatible with the following software and equipment: • Microsoft MS-DOS 6.22 • Windows 3.1 • Windows for Workgroups 3.11 • Windows 95 (not compatible with WindowNT or OS/2) • Sound Blaster-16 • Apple displays • Most third-party VGA and SVGA displays • Power Macintosh 5400, 6400 (7-inch card only), 7200, 7500, 7600, 8500, and 9500 series computers Basics General Compatibility Information - 4 The 166 MHz-P and PR166 cards are compatible with the following software and equipment: • Microsoft MS-DOS 6.22 • Windows 3.1 • Windows for Workgroups 3.11 • Windows 95 (not compatible with WindowNT or OS/2) • Sound Blaster-16 • Apple displays • Most third-party VGA and SVGA displays The 166 MHz-P card is compatible with the Power Macintosh 4400, 7220, 7200, 7300, 7500, 7600, 8500, 8600, 9500, and 9600 series computers, while the PR166 card is only compatible with the Power Macintosh 4400/ 200 and 7220/200 (Far East only) computers. -
The Powerpc Macs: Model by Model
Chapter 13 The PowerPC Macs: Model by Model IN THIS CHAPTER: I The PowerPC chip I The specs for every desktop and portable PowerPC model I What the model numbers mean I Mac clones, PPCP, and the future of PowerPC In March 1994, Apple introduced a completely new breed of Mac — the Power Macintosh. After more than a decade of building Macs around the Motorola 68000, 68020, 68030, and 68040 chips, Apple shifted to a much faster, more powerful microprocessor — the PowerPC chip. From the start, Apple made it clear it was deadly serious about getting these Power Macs into the world; the prices on the original models were low, and prices on the second-generation Power Macs dropped lower still. A well- equipped Power Mac 8500, running at 180 MHz, with 32MB of RAM, a 2 GB hard drive, and a eight-speed CD-ROM drive costs about $500 less than the original Mac SE/30! When the Power Macs were first released, Apple promised that all future Mac models would be based on the PowerPC chip. Although that didn’t immediately prove to be the case — the PowerBook 500 series, the PowerBook 190, and the Quadra 630 series were among the 68040-based machines released after the Power Macs — by the fall of 1996, Macs with four-digit model numbers (PowerPC-based Power Macs, LCs, PowerBooks, and Performas) were the only computers still in production. In less than two years, 429 430 Part II: Secrets of the Machine the Power Mac line has grown to over 45 models. -
Table of Contents Feature Article
RLG DigiNews: Volume 4, Number 3 Table of Contents ● Feature Article ❍ Keeping Memory Alive: Practices for Preserving Digital Content at the National Digital Library Program of the Library of Congress by Caroline R. Arms ● Technical Feature ❍ Risk Management of Digital Information: a File Format Investigation ● Highlighted Web Site - TechFest ● FAQ - SCSI, UDMA, USB, and Firewire Technology ● Calendar of Events ● Announcements ● RLG News ● Hotlinks Included in This Issue Feature Article Keeping Memory Alive: Practices for Preserving Digital Content at the National Digital Library Program of the Library of Congress by Caroline R. Arms, National Digital Library Program & Information Technology Services, Library of Congress [email protected] Introduction The National Digital Library Program (NDLP) provides remote public access to unique collections of Americana held by the Library of Congress through American Memory. During the 1990s, the program digitized materials from a wide variety of original sources, including pictorial and textual materials, audio, http://www.rlg.org/preserv/diginews/diginews4-3.html (1 of 24)6/21/2005 1:31:04 PM RLG DigiNews: Volume 4, Number 3 video, maps, atlases, and sheet music. Monographs and serials comprise a very small proportion of the textual materials converted. The program's emphasis has been on enhancing access. No digitization has been conducted with the intent of replacing the original materials; indeed, great care is taken over handling fragile and unique resources and conservation steps often precede scanning. (1) Nevertheless, these digital resources represent a significant investment, and the Library is concerned that they continue to be usable over the long term. The practices described here should not be seen as policies of the Library of Congress; nor are they suggested as best practices in any absolute sense.