Phenformin and Lactic Acidosis Well

Total Page:16

File Type:pdf, Size:1020Kb

Phenformin and Lactic Acidosis Well frequency that the patient is incapacitated socio- threatening metabolic acidosis is a very common economically; (2) intensive drug therapy has been event in patients who are in shock from a variety unsuccessful; (3) availability of facilities for de- of causes, including hemorrhage, myocardial in- tailed clinical and electrophysiological analysis farction and septicemia. A significant association essential for neurosurgical exploration. Surgical with gram-negative infection has been noted. A excision is of value in a limited number of patients few patients, however, have been demonstrated to with epilepsy and search must be continued for develop lactic acidosis apparently spontaneously, newer drugs, without serious toxicity, to reduce and in the absence of other recognizable disease. our current failures in drug therapy. It is noteworthy that among reported diabetic pa- ROBERT A. FISHMAN, M.D. tients who have developed "spontaneous" lactic Department of Neurology acidosis, in whom there was not identifiable addi- University of California San Prancisco Medical Center tional cause for lactic acidosis, all were receiving phenformin. The latter factor we believe to be of major sig- nificance, since virtually every other case of lactic acidosis in the diabetic has been preceded by an acute illness whose characteristics are such as to be related to lactic acidosis in the non-diabetic as Phenformin and Lactic Acidosis well. In other words, in at least ten diabetics who developed lactic acidosis there was no other identi- fiable cause than phenformin ingestion. One case SINCE THE EARLIEST days of its clinical use in the of attempted suicide by ingestion of 1,500 mg of treatment of diabetes, there has been published phenformin did not result in an elevation of blood concern about the possible role of phenformin in lactate5; while a second case of ingestion of 850 the causation of lactic acidosis.' Elsewhere in this mg resulted in an unidentified metabolic aci- issue of CALIFORNIA MEDICINE is tthe twenty-sev- dosis.6 Furthermore, it seems clear that many thou- enth published case report of lactic acidosis occur- sands of patients have taken phenformin as therapy ring in a diabetic known to have been treated with for diabetes mellitus and have not developed lactic phenformin. We are aware of reports of 63 dia- acidosis. betic with lactic acidosis, of which 54 patients of the confusion in our to a cases have been and the remaining nine Part ability assign published to an are known to us in our own direct relationship of phenformin ingestion cases unpublished,2'3'4 incidence of lactic acidosis lies in our incomplete experience. Of this number, 38 were receiving lactic knowledge of the mechanism of action of this drug. phenformin at the time they developed aci- is metab- were known to have been taking Recent evidence that phenformin rapidly dosis, five patients to two and six insulin. olized, probably by the liver, para-hydroxyphen- tolbutamide, chlorpropamide casts much doubt the results This incidence of use of ethylbiguanide upon very high phenformin in vitro examinations of mechanism of ac- among reported and known cases of lactic acidosis of the in the diabetic leads naturally to the question of tion of the drug.7 Furthermore, there is a significant relationship between the in vitro effects of phen- cause and effect. Since lactic acidosis is known to situa- have occurred both in diabetic patients who were formin and its concentration in experimental tions. Evidence exists which supports the idea that taking no drug therapy and in diabetics on therapy is not clear. normally achieved blood levels of phenformin are other than phenformin, the relationship the metabolic of the more ob- not capable of producing effects On the other hand one convincing associated with the in- servations is the fact that at least ten of the reported which have been directly cases of lactic acidosis in which phenformin was creased production of lactic acid by tissues exposed being taken occurred in patients who were taking to phenformin. These effects are, however, possible no other medication and who were previously in with higher concentrations of phenformin, and such metabolic balance and who had no other identifi- levels have only been demonstrated in diabetics able cause for the lactic acidosis. who develop lactic acidosis while taking phenfor- The subject of lactic acidosis has been reviewed min.8 in detail elsewhere.2 The accumulation of quanti- In the absence of definitive evidence, however, ties of lactic acid sufficient to create severe and life- it is essential to have a rational approach to the use 348 APRIL 1969 * 10 . 4 of this drug in the therapy of the diabetic. In this careful observation of the patient for metabolic context, we would point to the following informa- acidosis. tion: Therapy of lactic acidosis remains empirical. 1. Apparently spontaneous lactic acidosis, with Therapeutic modalities reported to date include frequent fatal termination, has occurred in diabetic the correction of the metabolic acidosis with the patients being treated with phenformin alone, in use of large amounts of sodium bicarbonate in- whom there was no evidence of other potential travenously, peritoneal dialysis, methylene blue, cause of lactic acidosis. glucose and insulin, and tromethamene 2. Among therapeutic agents being given to dia- (THAM®9). Additionally it is agreed that meas- betic patients who have developed a catastrophic ures designed to maintain intravascular volume, illness which led to lactic acidosis, there is a greater tissue oxygenation, cardiac function and control of association with the use of phenformin than with infection are important in the management of this any other therapeutic agent, by a very wide margin. condition. Experience indicates that correction of 3. In vivo human studies exist which validate the acidosis with intravenous sodium bicarbonate, the existence of elevated resting blood lactate in along with detailed attention to the correction of patients receiving phenformin and which indicate identifiable defects in hydration, hemoglobin levels, that lactic acid is produced in increased amounts cardiac function, tissue oxygenation and control by diabetic patients given phenformin acutely.8'9 of infection are the most significant contributors 4. Phenformin is metabolized by the liver and to survival of these patients. The other therapeutic excreted in the urine. Seventeen of 18 reported modalities (methylene blue, THAM, glucose and cases of lactic acidosis in patients taking phenfor- insulin) await further confirmation. min, in whom estimates of renal function are avail- able, show evidence of impaired renal function at REFERENCES 1. Walker, R. S., and Linton, A. L.: Phenethylbiguanide: Danger. the onset of their lactic acidosis. ous side-effect, Brit. Med. J., 2:1005, 1959. 2. Tranquada, R. E.: Lactic acidosis-A review, Calif. Med., 101: 5. Three patients with lactic acidosis, who had 450, 1964. 3. Johnson, H. K., and Waterhouse, C.: Lactic acidosis and phen. been receiving phenformin were shown to have formin, Arch. Int. Med., 122:367, 1968. elevated levels of blood phenformin in concentra- 4. Proctor, D. W., and Stowers, J. M.: Fatal lactic acidosis after an overdose of phenformin, Brit. Med. J., 4:216, 1967. tion capable of inducing increased lactate pro- 5. Dobson, H. L.: Attempted suicide with phenformin, Diabetes, 14:811, 1965. duction by tissues in in vitro experiments.8 6. Davidson, M. B., Bozarth W. R., Challoner, D. R., and Good- ner, C. J.: Phenformin, hypogiycemia and lactic acidosis-Report of For these reasons, and until unequivocal evi- attempted suicide, New Eng. J. Med., 275:886, 1966. 7. Beckmann, R.: The fate of biguanides in man, Ann. N.Y. Acad. dence can be presented to the contrary, we are of Sci., 148:820, 1968. the opinion that there is a relationship between the 8. Tranquada, R. E., Bernstein, S., and Martin, H. E.: Irreversible lactic acidosis associated with phenformin therapy, JAMA, 184:37, incidence of lactic acidosis and the use of phenfor- 1963. 9. Searle, G. L., Shilling, S., Porte, D., Barbaccia, J., DeGrazia, J., min in the treatment of diabetes mellitus. It would and Cavalieri, R. R.: Body glucose kinetics in non-diabetic human appear that the hazard is greatest among patients subjects after phenethylbiguanide, Diabetes, 15:173, 1966. who have impaired renal function and those who are subjected to other causes of lactic acidosis, such as severe gram-negative infection or acute myo- cardial infarction. We therefore recommend that reemphasis be given to the current instructions packaged with this drug to the effect that phenfor- mn is contraindicated in patients who have im- paired renal function, and in the presence of other A Physician Is significant acute illness, chronic infection, and acute or chronic heart disease. Worthy of His Hire It should be pointed out that a significant num- ber of patients who developed lactic acidosis while A WORKMAN IS worthy of his hire. This has long on phenformin had the onset of lactic acidosis been an important tenet of our national philoso- accompanied by nausea and vomiting and ab- phy. Our society today also holds that discrimina- dominal pain. The occurrence of these symptoms tion is an evil thing. Whenever discrimination is in any diabetic taking phenformin should lead to suspected or exposed, there is apt to be a great the immediate discontinuation of the drug and public outcry accompanied by demands that the CALIFORNIA MEDICINE 349.
Recommended publications
  • Use of Metformin in the Setting of Mild-To-Moderate Renal Insufficiency
    Reviews/Commentaries/ADA Statements REVIEW Use of Metformin in the Setting of Mild-to-Moderate Renal Insufficiency 1 KASIA J. LIPSKA, MD hepatic gluconeogenesis without raising 2 CLIFFORD J. BAILEY, PHD, FRCP fi 3 insulin levels, it rarely leads to signi cant SILVIO E. INZUCCHI, MD hypoglycemia when used as a monother- apy (8,11). As a result, metformin is widely considered an ideal first-line agent for the treatment of type 2 diabetes, as common clinical conundrum faces despite multiple trials of intensive glu- recommended by several clinical guide- all U.S. practitioners treating pa- cose control using a variety of glucose- lines (12–14). A fi tients with type 2 diabetes. Today’s lowering strategies, there is a paucity of In addition to such bene ts, metfor- U.S. Food and Drug Administration pre- data to support specificadvantageswith min reduces the risk of developing di- scribing guidelines for metformin contra- other agents on cardiovascular outcomes abetes in individuals at high risk for the indicate its use in men and women with (5–7). disease (15) and has been considered as a serum creatinine concentrations $1.5 In the original UK Prospective Di- reasonable “off-label” approach in se- and $1.4 mg/dL ($132 and $123 abetes Study (UKPDS), 342 overweight lected individuals for diabetes prevention mmol/L), respectively. In a patient toler- patients with newly diagnosed diabetes (16). ating and controlled with this medication, were randomly assigned to metformin should it automatically be discontinued therapy (8). After a median period of 10 — as the creatinine rises beyond these cut years, this subgroup experienced a 39% HISTORICAL PERSPECTIVE De- fi points over time? Stopping metformin of- (P = 0.010) risk reduction for myocardial spite these proven bene ts, metformin ten results in poorly controlled glycemia infarction and a 36% reduction for total remains contraindicated in a large seg- and/or the need for other agents with their mortality (P = 0.011) compared with con- ment of the type 2 diabetic population, own adverse-effect profiles.
    [Show full text]
  • The Na+/Glucose Co-Transporter Inhibitor Canagliflozin Activates AMP-Activated Protein Kinase by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels
    Page 1 of 37 Diabetes Hawley et al Canagliflozin activates AMPK 1 The Na+/glucose co-transporter inhibitor canagliflozin activates AMP-activated protein kinase by inhibiting mitochondrial function and increasing cellular AMP levels Simon A. Hawley1†, Rebecca J. Ford2†, Brennan K. Smith2, Graeme J. Gowans1, Sarah J. Mancini3, Ryan D. Pitt2, Emily A. Day2, Ian P. Salt3, Gregory R. Steinberg2†† and D. Grahame Hardie1†† 1Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK 2Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada 3Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, UK Running title: Canagliflozin activates AMPK Corresponding authors: Dr. D. G. Hardie, Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK; Dr. G.R. Steinberg, Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada Tel: +44 (1382) 384253; FAX: +44 (1382) 385507; e-mail: [email protected] Tel: +1 (905) 525-9140 ext.21691; email: [email protected] Word count in main text: 3,996 Number of Figures: 7 †these authors made equal contributions to this study ††joint corresponding authors Diabetes Publish Ahead of Print, published online July 5, 2016 Diabetes Page 2 of 37 Hawley et al Canagliflozin activates AMPK 2 ABSTRACT Canagliflozin, dapagliflozin and empagliflozin, all recently approved for treatment of Type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose re- uptake by SGLT2 in the kidney, without affecting intestinal glucose uptake by SGLT1.
    [Show full text]
  • Valsartan in Combination with Metformin and Gliclazide in Diabetic
    Patra et al. Future Journal of Pharmaceutical Sciences (2021) 7:157 Future Journal of https://doi.org/10.1186/s43094-021-00307-2 Pharmaceutical Sciences RESEARCH Open Access Valsartan in combination with metformin and gliclazide in diabetic rat model using developed RP-HPLC method Rasmita Patra, Yedukondalu Kollati, Sampath Kumar NS and Vijaya R. Dirisala* Abstract Background: Oral administration of biguanides (metformin) and sulfonylureas (gliclazide) are the most common approach of management of type 2 diabetes in humans. Among these diabetic patients, approximately 40–60% suffers from hypertension. Hence, the need of the day is application of polytherapy. A major challenge in polytherapy is the drug-drug interactions that may arise. Hence, this study is focused to develop a reverse phase high-performance liquid chromatography (RP-HPLC) method for concurrent estimation of diabetic drug metformin and hypertension drug valsartan using C18 column and find any possible pharmacokinetic interactions between the two drug combinations strategies, i.e., metformin-valsartan and gliclazide-valsartan in streptozotocin-induced diabetic rats. Result: The bioanalysis of drug-drug interaction pharmacokinetic result showed no significant difference in the tmax of single treatment of gliclazide and single treatment of metformin or upon co-administration with valsartan. Conclusion: Our study has shown that polytherapy of valsartan, a drug administered for hypertension along with hypoglycemic drugs metformin and gliclazide, can be advantageous and safe in patients suffering from both diabetes and hypertension. Keywords: RP-HPLC, Metformin, Valsartan, Gliclazide, Hypertension, Diabetes mellitus Background disease if left undetected or untreated. Such patients re- Diabetes has become a growing epidemic, and the per- quire polytherapy wherein drug-drug interactions may centage of patient population is increasing in leaps and lead to adverse side effects [5, 6].
    [Show full text]
  • Objectives Anti-Hyperglycemic Therapeutics
    9/22/2015 Some Newer Non-Insulin Therapies for Type 2 Diabetes:Present and future Faculty/presenter disclosure Speaker’s name: Dr. Robert G. Josse SGLT2 Inhibitors Grants/research support: Astra Zeneca, BMS, Boehringer Dopamine D2 Receptor Agonist Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Roche, Bile acid sequestrant sanofi, Consulting Fees: Astra Zeneca, BMS, Eli Lilly, Janssen, Merck, Dr Robert G Josse Division of Endocrinology & Metabolism Speakers bureau: Janssen, Astra Zeneca, BMS, Merck, St. Michael’s Hospital Professor of Medicine Stocks and Shares:None University of Toronto 100-year History of Objectives Anti-hyperglycemic Therapeutics 14 Discuss the mechanism of action of SGLT2 inhibitors, SGLT-2 inhibitor 12 Bromocriptine-QR dopamine D2 receptor agonists and bile acid sequestrants Bile acid sequestrant in the management of type 2 diabetes Number of 10 DPP-4 inhibitor classes of GLP-1 receptor agonist Amylinomimetic anti- 8 Glinide Basal insulin analogue Identify the benefits and risks of the newer non-insulin hyperglycemic Thiazolidinedione agents 6 Alpha-glucosidase inhibitor treatment options Phenformin Human Rapid-acting insulin analogue 4 Sulphonylurea insulin Metformin Intermediate-acting insulin Phenformin Describe the potential uses of these therapies in the 2 withdrawn Soluble insulin treatment of type 2 diabetes 0 1920 1940 1960 1980 2000 2020 Year UGDP, DCCT and UKPDS studies. Buse, JB © 1 9/22/2015 Renal handling of glucose Collecting (180 L/day) Glomerulus duct (1000 mg/L) Proximal =180 g/day Distal tubule S1 tubule Glucose ~90% filtration SGLT2 Inhibitors ~10% S3 Glucose reabsorption Loop No/minimal of Henle glucose excretion S1 segment of proximal tubule S3 segment of proximal tubule - ~90% glucose reabsorbed - ~10% glucose reabsorbed - Facilitated by SGLT2 - Facilitated by SGLT1 SGLT = Sodium-dependent glucose transporter Adapted from: 1.
    [Show full text]
  • Assessing the Value of Treatment For
    Tim Wilsdon ASSESSING THE VALUE OF Lilian Li TREATMENT FOR DIABETES TO PATIENTS, THE HEALTHCARE SYSTEM, AND WIDER SOCIETY – A CASE STUDY ON CHINA TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................................................... 4 1. INTRODUCTION ................................................................................................................................... 11 1.1. Background ............................................................................................................................12 1.2. Our approach .........................................................................................................................13 1.3. The structure of the report .....................................................................................................13 2. DIABETES ............................................................................................................................................. 14 2.1. Access to medicines for diabetes..........................................................................................20 2.2. The value of treatment for diabetes .......................................................................................25 2.3. The value of medicines for diabetes in HICs and MICs .........................................................31 3. POLICY IMPLICATIONS .....................................................................................................................
    [Show full text]
  • Phenformin Hydrochloride
    456 Antidiabetics 4. Levien TL, et al. Nateglinide therapy for type 2 diabetes melli- 2. Wolffenbuttel BHR, Huijberts MSP. Aminoguanidine, a poten- ing then treatment with pioglitazone should be stopped; treat- tus. Ann Pharmacother 2001; 35: 1426–34. tial drug for the treatment of diabetic complications. Neth J Med ment should also be stopped if jaundice develops. 1993; 42: 205–8. 5. Fonseca V. et al. Addition of nateglinide to rosiglitazone mono- 1. Maeda K. Hepatocellular injury in a patient receiving pioglita- therapy suppresses mealtime hyperglycemia and improves over- 3. Abdel-Rahman E, Bolton WK. Pimagedine: a novel therapy for zone. Ann Intern Med 2001; 135: 306. all glycemic control. Diabetes Care 2003; 26: 1685–90. diabetic nephropathy. Expert Opin Invest Drugs 2002; 11: 2. May LD, et al. Mixed hepatocellular-cholestatic liver injury af- 6. Campbell IW. Nateglinide—current and future role in the treat- 565–74. ter pioglitazone therapy. Ann Intern Med 2002; 136: 449–52. ment of patients with type 2 diabetes mellitus. Int J Clin Pract 4. Thornalley PJ. Use of aminoguanidine (pimagedine) to prevent 3. Pinto AG, et al. Severe but reversible cholestatic liver injury af- 2005; 59: 1218–28. the formation of advanced glycation endproducts. Arch Biochem ter pioglitazone therapy. Ann Intern Med 2002; 137: 857. Biophys 2003; 419: 31–40. 4. Chase MP, Yarze JC. Pioglitazone-associated fulminant hepatic Preparations failure. Am J Gastroenterol 2002; 97: 502–3. Proprietary Preparations (details are given in Part 3) 5. Farley-Hills E, et al. Fatal liver failure associated with pioglita- Arg.: Nateglin; Starlix; Braz.: Starlix; Canad.: Starlix; Chile: Gluconol; Star- zone.
    [Show full text]
  • Current Treatment Approaches to Type 2 Diabetes Mellitus: Successes and Shortcomings
    . REPORTS. Current Treatment Approaches to Type 2 Diabetes Mellitus: Successes and Shortcomings Francis M. Collins, MD Abstract ly 30%. The implications of these findings Diabetes mellitus affects approximately 17 mil- are profound in terms of long-term com- lion adults in the United States and has profound plications and their associated costs. Most implications in terms of long-term microvascular primary care providers and endocrinolo- and macrovascular complications and their associ- gists acknowledge that good glycemic con- ated costs. In type 2 diabetes, insulin resistance trol can prevent or at least delay many of and a relative β-cell defect are the underlying pathologic problems leading to hyperglycemia. the complications of diabetes. However, Notably, insulin resistance is also associated with prior to the Diabetes Control and 2 obesity, dyslipidemia, and hypertension. Diabetes Complications Trial (DCCT) and the can be defined as a disease of accelerated cardio- United Kingdom Prospective Diabetes vascular deterioration associated with elevated Study (UKPDS),3 limited evidence was blood glucose levels. Glycemic control has been available to support this belief. Earlier shown to reduce the long-term complications studies failed to show a significant preven- associated with diabetes. Although medical nutri- tive benefit, for the most part because the tion therapy and appropriately prescribed definitions of good glycemic control used increased physical activity are important compo- in the studies were set too high. Even for nents of a diabetes management plan, most those who believed that tight glycemic patients need medication to lower glucose to near- normal levels. Therapeutic options for treating control was beneficial, therapeutic choic- hyperglycemia include sulfonylureas and other es for monitoring and treating hyper- insulin secretagogues, biguanides, α-glucosidase glycemia were limited.
    [Show full text]
  • The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates
    2784 Diabetes Volume 65, September 2016 Simon A. Hawley,1 Rebecca J. Ford,2 Brennan K. Smith,2 Graeme J. Gowans,1 Sarah J. Mancini,3 Ryan D. Pitt,2 Emily A. Day,2 Ian P. Salt,3 Gregory R. Steinberg,2 and D. Grahame Hardie1 The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels Diabetes 2016;65:2784–2794 | DOI: 10.2337/db16-0058 Canagliflozin, dapagliflozin, and empagliflozin, all recently transporters that carry glucose across apical membranes approved for treatment of type 2 diabetes, were derived of polarized epithelial cells against concentration gradi- from the natural product phlorizin. They reduce hypergly- ents, driven by Na+ gradients. SGLT1 is expressed in the cemia by inhibiting glucose reuptake by sodium/glucose small intestine and responsible for most glucose uptake cotransporter (SGLT) 2 in the kidney, without affecting across the brush border membrane of enterocytes, whereas intestinal glucose uptake by SGLT1. We now report that SGLT2 is expressed in the kidney and responsible for most fl canagli ozin also activates AMPK, an effect also seen glucose readsorption in the convoluted proximal tubules. with phloretin (the aglycone breakdown product of The first identified SGLT inhibitor was a natural product, fi phlorizin), but not to any signi cant extent with dapagli- phlorizin, which is broken down in the small intestine to flozin, empagliflozin, or phlorizin. AMPK activation oc- phloretin, the aglycone form (Fig. 1). Although phlorizin curred at canagliflozin concentrations measured in had beneficial effects in hyperglycemic animals (2), it in- human plasma in clinical trials and was caused by hibits SGLT1 and SGLT2, causing adverse gastrointestinal inhibition of Complex I of the respiratory chain, leading effects (3).
    [Show full text]
  • What Managed Care Needs to Know About Novel Therapies in The
    3/29/2017 What Managed Care Needs to Know About Novel Therapies in the Evolving Management of Type 2 Diabetes For Audio Please call 866‐206‐0240, Participant Code 64953949# If you are having difficulties logging in or calling in, please contact Jeremy at [email protected]. To Receive your certificate, please be sure to complete the online evaluation survey. Please email Katie at [email protected] for the survey link. Faculty Disclosure: Dr. Reid serves as a consultant and on an advisory board for Boehringer Ingelheim, Janssen, Lilly USA, Novo Nordisk and Sanofi. His presentation has been peer reviewed. Planning Committee Disclosure: Bill Williams, MD has no real or perceived financial relationships to disclose. Jacquelyn Smith, RN, BSN, MA, CMCN has no real or perceived financial relationships to disclose. Katie Eads has no real or perceived financial relationships to disclose. Will Williams has no real or perceived financial relationships to disclose. Accreditation: The National Association of Managed Care Physicians (NAMCP) is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. NAMCP designates this enduring material for a maximum of 1 AMA PRA Category I creditsTM. Each physician should claim credit commensurate with the extent of their participation in the activity. The American Association of Managed Care Nurses is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. Nurses who complete this activity and complete an evaluation form will receive 1 hour in continuing nursing credit. This activity has been approved by the American Board of Managed Care Nursing for 1.0 contact hour toward CMCN recertification requirements.
    [Show full text]
  • Canagliflozin, Dapagliflozin and Empagliflozin Monotherapy for Treating Type 2 Diabetes: Systematic Review and Economic Evaluation
    HEALTH TECHNOLOGY ASSESSMENT VOLUME 21 ISSUE 2 JANUARY 2017 ISSN 1366-5278 Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation Rhona Johnston, Olalekan Uthman, Ewen Cummins, Christine Clar, Pamela Royle, Jill Colquitt, Bee Kang Tan, Andrew Clegg, Saran Shantikumar, Rachel Court, J Paul O’Hare, David McGrane, Tim Holt and Norman Waugh DOI 10.3310/hta21020 Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation Rhona Johnston,1 Olalekan Uthman,2 Ewen Cummins,1 Christine Clar,3 Pamela Royle,2 Jill Colquitt,4 Bee Kang Tan,2 Andrew Clegg,5 Saran Shantikumar,2 Rachel Court,2 J Paul O’Hare,2 David McGrane,6 Tim Holt7 and Norman Waugh2* 1McMDC, Harrogate, UK 2Warwick Evidence, Division of Health Sciences, University of Warwick, Coventry, UK 3Berlin, Germany 4Effective Evidence, Waterlooville, UK 5University of Central Lancashire, Preston, UK 6Queen Elizabeth University Hospital, Glasgow, UK 7University of Oxford, Oxford, UK *Corresponding author Declared competing interests of authors: David McGrane has spoken at educational meetings sponsored by AstraZeneca, Eli Lilly, Sanofi, MSD, Takeda Pharmaceutical Company, Novo Nordisk, Janssen, and has served on Advisory Boards for Eli Lilly, Sanofi, Novo Nordisk. J Paul O’Hare has received lecture fees, advisory board meeting fees, and grants for research from Novo Nordisk and Sanofi. All fees are paid through University of Warwick to fund access to insulin projects in sub-Saharan Africa. Published January 2017 DOI: 10.3310/hta21020 This report should be referenced as follows: Johnston R, Uthman O, Cummins E, Clar C, Royle P, Colquitt J, et al.
    [Show full text]
  • Tight Control in Type 2 Diabetes: More Harm Than Good?
    Tight Control in Type 2 Diabetes: More Harm than Good? www.doh.dc.gov Collaborators www.doh.dc.gov More resources available at the DC Center for Rational Prescribing doh.dc.gov/dcrx www.doh.dc.gov Course Faculty • Adriane Fugh-Berman, MD • Tom Finucane, MD • Stephen Lippman, MD, PhD • Kofi Onumah, PharmD, RPh • Leonard Pogach, MD, MBA • Caroline Trapp, DNP, APN-BC, CDE, FAANP • Susan Wood, PhD www.doh.dc.gov Conflicts of Interest Disclosure • Adriane Fugh-Berman, MD is a paid expert witness at the request of plaintiffs in litigation regarding pharmaceutical marketing practices. • Tom Finucane, MD is a member of the Pharmacy and Therapeutics Committee for Anthem Inc. • Stephen Lippman, MD, PhD has been a paid expert witness at the request of plaintiffs in litigation regarding pharmaceutical marketing practices. • Kofi Onumah, PharmD, RPh has no conflicts of interest. • Leonard Pogach, MD, MBA has no conflicts of interest. • Caroline Trapp, DNP, APN-BC, FAANP has no conflicts of interest. • Susan Wood, PhD has no conflicts of interest. www.doh.dc.gov Important Information The video will progress at its own pace. Do not attempt to speed up the video. The post-test will only unlock after viewing the entire video. The video can be paused and resumed later. www.doh.dc.gov Course Objectives After completing this module, participants should be able to… 1. Discuss the risks 2. Describe the 3. Implement new and benefits of limitations of clinical strategies for metformin, insulin, evidence regarding counseling patients and other treatments tight control in about making for type 2 diabetes.
    [Show full text]
  • SEMPA 2019 Dangerous Acidosis All of These Patients Are Acidotic … Corey M
    4/16/2019 SEMPA 2019 Dangerous Acidosis All of these patients are acidotic … Corey M. Slovis, M.D. Vanderbilt University Medical Center What is the diagnosis? Metro Nashville Fire Department Nashville International Airport Nashville, TN Name That Acidosis Name That Acidosis • Blindness • Hypoxia • Urine Findings • Hypocalcemia • Papilledema • Abdominal Pain • “In a snow storm” • Funny Breath • pH < 6.8 • Hypoglycemia • IV lorazepam • Carbon monoxide • Status Seizures Name That Acidosis Metabolic Acidosis Acidotic Diabetic “not in HCO3 pH DKA” with relatively WNL Blood Glucose 1 4/16/2019 Respiratory Alkalosis pCO2 Experts in Acid-base can tell if there is Compensation vs. a Second Primary Process pH Compensation is Respiratory Compensation in Metabolic Acidosis Always the Opposite HCO pH 3 pCO2 Acidosis Alkalosis Metabolic Respiratory pH Anion Gap Anion Gap • The gap is the Positives minus the Negatives • An elevated gap = MUDPILES + - - • The gap is Na -[Cl + HCO3 ] • WNL Gap but HCO3 = HARDUP • The gap should be about 8-12 (± 2) • The gap should always be less than 15 2 4/16/2019 Elevated Anion Gap Normal Gap Acidosis + - - (Na -[Cl + HCO3 ] 15) (Low Bicarb but A.G. is NOT Elevated) M Methanol H Hyperventilation (compensation) U Uremia A Acids, Addison’s, Carbonic Anhydrase DK DKA, AKA, Starvation Ketoacidosis Inhibitors P Phenformin/Metaformin, Paracetamol, Propylene Glycol RRTA I INH and Iron D Diarrhea L Lactic Acidosis U Ureteral Diversion, Ureterosigmoidostomy E Ethylene Glycol P Pancreatic Fistula, Pancreatic Drainage S Salicylates,
    [Show full text]