D2.6 Report of the Laboratory Tests for Pyrolysis of Forestry Residues
Total Page:16
File Type:pdf, Size:1020Kb
D2.6 Report of the Laboratory tests for Pyrolysis of forestry residues DISCLAIMER The opinion stated in this report reflects the opinion of the authors and not the opinion of the European Commission. All intellectual property rights are owned by AgroCycle consortium members and are protected by the applicable laws. Reproduction is not authorised without prior written agreement. The commercial use of any information contained in this document may require a license from the owner of that information. ACKNOWLEDGEMENT This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 690142. 2 Deliverable Document Sheet Project Acronym AgroCycle Project Title Sustainable techno-economic solutions for the agricultural value chain Grant Agreement number 690142 Call identifier H2020-WASTE-2015-two-stage Topic identifier WASTE-7-2015 Ensuring sustainable use of agricultural waste, co-products and by- products Funding Scheme Research and Innovation Action Project duration 36 months (June 2016 – May 2019) Coordinator NUID UCD – Professor Shane Ward Website www.AgroCycle.eu Deliverable No. D2.6 Deliverable title Report of the Laboratory test for Pyrolysis of forestry residues Description Report will include experimental results for individual and/or combined pre-treatments. D2.6 covers the experimental results for the pyrolysis of three different forestry biomasses (conifers) as well as the biorefinery model proposed by means of virtual simulation WP No. 2 Related task Task 2.4 Lead Beneficiary Exergy Ltd Author(s) Rocio Roldan Contributor(s) Eoin White – UCD Type Report Dissemination Level Confidential Language English – GB Due Date M24 Submission Date Date: Action: Version: Ownership: 09/05/2018 Written V.1 Rocio Roldan 10/05/2018 Reviewed/amended/approved V.2 Eoin White 18/05/2018 Reviewed/amended/approved V.3 Sotiris Patsios 23/05/2018 Amended V.4 Rocio Roldan 25/05/2018 Submitted via Online Portal to V.4 Tom Oldfield Funding Agency 18/10/2018 Re-submitted after minor V.5 Anna Lesniak- corrections via Online Portal to Podsiadlo Funding Agency 3 Contents Contents .............................................................................................. 4 Index of Tables ..................................................................................... 5 Index of Figures .................................................................................... 5 1. Introduction .................................................................................. 8 2. AgroCycle framework .................................................................. 10 3. Feedstocks ................................................................................... 12 4. Reactors ...................................................................................... 19 5. Experimental preparation ............................................................ 23 5.1. Biomass preparation .................................................................. 23 5.2. Pyrolysis experiment .................................................................. 23 6. Pyrolysis results ........................................................................... 26 6.1. Product yield .............................................................................. 26 6.2. Determination of kinetic parameters of pyrolysis ........................ 30 6.3. Characterisation of the biomass and bio-oil ............................... 34 6.4. Other pyrolysis products – biochar and syngas .......................... 50 7. Simulations. Alternative process to upgrade bio-oil ..................... 52 7.1. Simulation specifications ............................................................ 53 7.2. Simulation Flowsheet ................................................................. 55 7.3. Section 10X. Pyrolysis ................................................................ 61 7.4. Section 20X. Bio-oil separation and upgrading .......................... 63 7.5. S-30X. Biochar valorisation ........................................................ 65 7.6. S-40X. Hydrocracking ................................................................ 67 7.7. Mass and energy balances. Electricity generated ...................... 68 7.8. Validation ................................................................................... 76 8. Potential bio-oil applications in the AgroCycle context ................ 78 9. Conclusions ................................................................................. 80 10. References ................................................................................ 81 11. Annex I. Tar composition .......................................................... 90 4 Index of Tables Table 1. Lignocellulosic biomasses suitable for pyrolysis .............................. 12 Table 2. Advantages of the different pyrolysis reactor technologies .............. 22 Table 3. Drawbacks of the different pyrolysis reactor technologies. .............. 22 Table 4. Yields from Spruce wood pyrolysis .................................................. 26 Table 5. Yields from pine wood pyrolysis ....................................................... 26 Table 6. Yields from larch wood pyrolysis ...................................................... 26 Table 7. Activation energy and pre-exponential factor during thermal decomposition of different biomass ................................................................ 31 Table 8. Proximate analysis of biomass (wt. %)............................................. 35 Table 9. Elemental analysis of the biomass ................................................... 38 Table 10. pH of pyrolysis bio-oil ..................................................................... 39 Table 11. Density of pyrolysis bio-oil (kg/dm3) @25 °C.................................. 40 Table 12. Viscosity of pyrolysis bio-oil (mm2/s) .............................................. 41 Table 13. The average specific heat capacity of pyrolysis bio-oil (J/g.K) for temperature range 25-100C ........................................................................... 43 Table 14: CHNSO Elemental Analysis of the Bio-oils .................................... 48 Table 15. Determinants detected in pyrolysis bio-oil (mg/kg) ......................... 49 Table 16. AgroCycle results comparison with literature review for bio-oil properties ....................................................................................................... 49 Table 17. Aspen simulation component list .................................................... 54 Table 18. Cyclones’ parameters in pyrolysis section ..................................... 62 Table 19. Absorption and desorption system in S-20X .................................. 65 Table 20. Biochar combustion reactors .......................................................... 66 Table 21. Cyclone system before turbine ....................................................... 66 Table 22. Hydrocracker calibrated model ...................................................... 67 Table 23. Properties of hydrocracking products ............................................. 68 Table 24.Mass and energy balance of overall pyrolysis simulation ............... 70 Index of Figures Figure 1. Cellulose strand (fibre) .................................................................... 14 Figure 2. Hemicellulose structure ................................................................... 15 Figure 3. Lignin structure ............................................................................... 15 Figure 4. Map showing the distribution of Picea [81]...................................... 16 Figure 5. Map showing distributions of Larix [87] ........................................... 17 Figure 6. Map showing distributions of Pinus [88] .......................................... 17 Figure 7. Bale production for bioenergy purposes (Courtesy of HAU/ Severn Carbon) .......................................................................................................... 18 Figure 8. Samples of a) spruce wood, b) pine wood and c) larch wood used for the pyrolysis activity ....................................................................................... 23 Figure 9. Biomass before pyrolysis experiments............................................ 23 Figure 10. Diagram of fast pyrolysis system .................................................. 24 5 Figure 11. Front view of the pyrolyser ............................................................ 25 Figure 12. Bio-oil recovery system ................................................................. 25 Figure 13. Pinus bio-oil. Left, particle size A; centre, particle size B; right, particle size C ................................................................................................ 27 Figure 14. Larch bio-oil. Left, particle size A; centre, particle size B; right, particle size C ................................................................................................ 27 Figure 15. Spruce bio-oil. Left, particle size A; centre, particle size B; right, particle size C ................................................................................................ 28 Figure 16. Biochar samples from the pyrolysis .............................................. 28 Figure 17. Product yield from spruce pyrolysis .............................................. 29 Figure 18. Product yield from pine pyrolysis .................................................