PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization

Total Page:16

File Type:pdf, Size:1020Kb

PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization This information is current as Hai-Min Sun, Xin-Lei Chen, Xin-Jie Chen, Jin Liu, Lie Ma, of September 29, 2021. Hai-Yan Wu, Qiu-Hua Huang, Xiao-Dong Xi, Tong Yin, Jiang Zhu, Zhu Chen and Sai-Juan Chen J Immunol 2017; 199:1817-1826; Prepublished online 24 July 2017; doi: 10.4049/jimmunol.1602018 Downloaded from http://www.jimmunol.org/content/199/5/1817 Supplementary http://www.jimmunol.org/content/suppl/2017/07/23/jimmunol.160201 Material 8.DCSupplemental http://www.jimmunol.org/ References This article cites 42 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/199/5/1817.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology PALLD Regulates Phagocytosis by Enabling Timely Actin Polymerization and Depolymerization Hai-Min Sun,1 Xin-Lei Chen,1 Xin-Jie Chen,1 Jin Liu, Lie Ma, Hai-Yan Wu, Qiu-Hua Huang, Xiao-Dong Xi, Tong Yin, Jiang Zhu, Zhu Chen, and Sai-Juan Chen PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all-trans-retinoic acid–induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phago- cytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator Downloaded from of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization. The Journal of Immu- nology, 2017, 199: 1817–1826. ALLD is an actin-associated protein and crucial to Mature myeloid cells maintain tissue homeostasis, repair, and establishing cellular morphology and maintaining cyto- remodeling, as well as eliminating foreign materials or pathogens P skeletal organization in various cell types (1, 2). A single through the specialized function of phagocytosis (18, 19). Phago- http://www.jimmunol.org/ PALLD gene gives rise to several isoforms, some of which are cytosis is the receptor-mediated engulfment of large particles expressed in tissue-specific patterns. The most common PALLD (diameter $0.5 mm) by plasma membrane–derived vacuoles isoform is 90–92 kDa and contains a proline-rich domain in the called phagosomes (20, 21). Phagocytosis begins as phagocytic N-terminal and three C-terminal IgC2 domains (third, fourth, and receptors are bound with certain signal moieties, such as certain fifth IgC2 domain) (3). PALLD interacts with proteins involved in intrinsic components, IgG, or complement opsonins, on the sur- actin polymerization and cross-linking, acting as a molecular scaf- face of particles. The occupied phagocytic receptors then trigger a folding protein that links proteins with different functional modali- series of complex intracellular signaling events to orchestrate ef- ties into large complexes (3–15). ficient particle internalization. The details of this process vary by guest on September 29, 2021 PALLD is absent or expressed at very low levels in peripheral depending on the substrate being internalized and receptor types blood monocytes, but is a constitutively expressed factor in nu- involved, but the clustering of occupied receptors to enhance merous types of vertebrate tissue cells. PALLD is significantly substrate-binding affinity in the phagosome is a common feature upregulated during the differentiation of monocytes into dendritic (20, 22). cells (16). PALLD upregulation during all-trans-retinoic acid Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P ] is essential for (ATRA)–induced myeloid differentiation of acute promyelocytic 2 the initial actin polymerization that drives pseudopod formation, leukemia cells implies that PALLD has a role in the differentiation whereas its hydrolysis is a prerequisite for actin depolymerization that and/or function of mature myeloid cells (17). allows complete phagosome closure. In mammalian cells, PI(4,5)P2 is metabolized by conversion to PI(3,4,5)P3 via class I PI3Ks; cleavaged into inositol 3,4,5-trisphosphate and diacylglycerol by State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui- phospholipase C; and dephosphorylated by inositol phosphatases Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shang- hai 200025, China such as inositol polyphosphate-5-phosphatase and/or oculocere- 1H.-M.S., X.-L.C., and X.-J.C. contributed equally to this work. brorenal syndrome of Lowe (OCRL) (23, 24). Efficient phagocytosis relies on the focal exocytosis of intra- Received for publication December 2, 2016. Accepted for publication June 12, 2017. cellular compartments that contributes to the release of membrane This work was supported by National Key Basic Research Program of China Grant 2013CB966800, Ministry of Health Grant 201202003, Mega-Projects of Scientific tension, allowing efficient phagosome formation around large par- Research for the 12th Five-Year Plan (2013ZX09303302), National Natural Science ticles (25, 26). Phagosomes undergo a maturation process following Foundation of China Grant 81123005, and the Samuel Waxman Cancer Research Foundation Co-Principal Investigator Program. scission from the plasma membrane, sequentially fusing with endo- somes and lysosomes, and ultimately becoming phagolysosomes, Address correspondence and reprint requests to Prof. Sai-Juan Chen, Prof. Zhu Chen, or Prof. Jiang Zhu, State Key Laboratory of Medical Genomics, Shanghai Institute of which are highly acidic and hydrolase-rich organelles that degrade Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of internalized particles (20). Medicine, 197 RuiJin Road II, Shanghai 200025, China. E-mail address: sjchen@stn. sh.cn (S.-J.C.), [email protected] (Z.C.), or [email protected] (J.Z.) In this study, we demonstrate a new function for PALLD in the The online version of this article contains supplemental material. promotion of phagocytic cup extension and closure. Our data identified PALLD as a crucial factor involved in the regulation of Abbreviations used in this article: ATRA, all-trans-retinoic acid; BM, bone marrow; BMDC, BM-derived dendritic cell; KD, knockdown; NC, negative control; OCRL, F-actin dynamics throughout multiple steps of phagocytosis, in- oculocerebrorenal syndrome of Lowe; PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate; cluding serum-mediated particle binding via modulation of FcgRIIA sh, short hairpin; siRNA, small interfering RNA. clustering, and delivery of PI(4,5)P2 phosphatase OCRL in nascent Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 phagosomes. www.jimmunol.org/cgi/doi/10.4049/jimmunol.1602018 1818 PALLD REGULATES ACTIN DYNAMICS IN PHAGOCYTOSIS Materials and Methods Fluor 546 phalloidin and Alexa Fluor 635 phalloidin (Invitrogen). Src Reagents and cell culture family kinase inhibitor PP2 was purchased from Selleckchem; cytochalasin D and ATRA were purchased from Sigma-Aldrich. In addition, 1.75 mm The following Abs were used in the experiments: anti-PALLD (Proteintech Fluoresbrite Bright Blue Microspheres were purchased from Poly- and Novus Biologicals); anti-FLAG M2 and anti–b-actin (Sigma-Aldrich); sciences; unlabeled zymosan and fluorescein-conjugated zymosan were anti-FcgIIA IV.3 (Stem Cell); anti-Src (Cell Signaling and Proteintech); purchased from Invitrogen. Murine GM-CSF and IL-4 were purchased anti-OCRL (Cell Signaling and Abcam); anti-PI(4,5)P2, anti-ARP3, and from PeproTech. anti-GFP (Abcam); anti-RAC1 and anti-CDC42 (Thermo Fisher); anti– The leukemia cell lines used in this study included human acute mye- phospho-Src Tyr416, anti-EEA1, anti-RAB7, and anti-LAMP1 (Cell Sig- loblastic leukemia HL60, SKNO-1, and Kasumi-1; human acute promyelocytic naling); anti–Gr-1-PE, CD11c-FITC, and anti–CD16-PE (eBioscience); leukemia NB4; human acute myelomonocytic leukemia OCI-AML3; human CD11b-PE (BioLegend); anti-CD18 (Proteintech); Alexa Fluor 488 anti- acute monocytic leukemia U937 and THP1; and human acute erythroid leu- rabbit IgG and Alexa Fluor 594 anti-mouse IgG (Jackson); and Alexa kemia HEL. The cell lines were cultured in RPMI 1640 medium containing Downloaded from http://www.jimmunol.org/
Recommended publications
  • PALLD Mutation in a European Family Conveys a Stromal Predisposition for Familial Pancreatic Cancer
    PALLD mutation in a European family conveys a stromal predisposition for familial pancreatic cancer Lucia Liotta, … , Maximilian Reichert, Michael Quante JCI Insight. 2021;6(8):e141532. https://doi.org/10.1172/jci.insight.141532. Clinical Medicine Gastroenterology Oncology Pancreatic cancer is one of the deadliest cancers, with low long-term survival rates. Despite recent advances in treatment, it is important to identify and screen high-risk individuals for cancer prevention. Familial pancreatic cancer (FPC) accounts for 4%–10% of pancreatic cancers. Several germline mutations are related to an increased risk and might offer screening and therapy options. In this study, we aimed to identity of a susceptibility gene in a family with FPC. Whole exome sequencing and PCR confirmation was performed on the surgical specimen and peripheral blood of an index patient and her sister in a family with high incidence of pancreatic cancer, to identify somatic and germline mutations associated with familial pancreatic cancer. Compartment-specific gene expression data and immunohistochemistry were also queried. The identical germline mutation of the PALLD gene (NM_001166108.1:c.G154A:p.D52N) was detected in the index patient with pancreatic cancer and the tumor tissue of her sister. Whole genome sequencing showed similar somatic mutation patterns between the 2 sisters. Apart from the PALLD mutation, commonly mutated genes that characterize pancreatic ductal adenocarcinoma were found in both tumor samples. However, the 2 patients harbored different somatic KRAS mutations (G12D […] Find the latest version: https://jci.me/141532/pdf CLINICAL MEDICINE PALLD mutation in a European family conveys a stromal predisposition for familial pancreatic cancer Lucia Liotta,1 Sebastian Lange,1 H.
    [Show full text]
  • Palladin Is a Marker of Liver Metastasis in Primary Pancreatic Endocrine Carcinomas*
    ANTICANCER RESEARCH 31: 2957-2962 (2011) Palladin is a Marker of Liver Metastasis in Primary Pancreatic Endocrine Carcinomas* EVITA B. HENDERSON-JACKSON3, JAMES HELM2, JONATHAN STROSBERG2, NELLY A. NASIR1, TIMOTHY J. YEATMAN2, LARRY K. KVOLS2, DOMENICO COPPOLA1* and AEJAZ NASIR1* Departments of 1Pathology, and 2Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.; 3Departments athology and Cell Biology, University of South Florida College of Medicine, Tampa, FL, U.S.A. Abstract. Background: Palladin is a metastasis-associated Pancreatic neuroendocrine tumors/carcinomas (PETs/ gene regulating cell motility. The expression of palladin protein PECAs) account for 1-2% of pancreatic neoplasms and are in pancreatic neuroendocrine tumors (PET) and carcinomas clinically challenging (1). The clinical behavior of PET is (PECA) is not known. Materials and Methods: A tissue often unpredictable. According to the current American Joint microarray (TMA) of well-differentiated (WD) PETs/PECAs Committee on Cancer (AJCC) Staging manual (2), well- (AJCC 2010) and non-neoplastic, histologically normal differentiated (WD) PECAs (WD-PECAs) are separated pancreatic tissue/islets (HNPIs) was immunostained with from well-differentiated PETs (WD-PETs) on the basis of palladin antibody and quantified using the Allred score. The gross invasion of the adjacent organs by the tumor results were correlated with the presence or absence of liver (duodenum, stomach, spleen) and/or the presence of metastases. Results: The retrospective study included 19 males metastases. With the development of metastases, patient and 19 females of age 27-79 years (mean 54). Tumor size was survival significantly drops and none of the currently 0.9-11.5 cm (mean 3.8).
    [Show full text]
  • Anti-Palladin (C-Terminal) (A3861)
    Anti-Palladin (C-terminal) produced in rabbit, IgG fraction of antiserum Product Number A3861 Product Description Precautions and Disclaimer Anti-Palladin (C-terminal) is produced in rabbit using as For R&D use only. Not for drug, household, or other the immunogen a synthetic peptide corresponding to a uses. Please consult the Safety Data Sheet for sequence at the C-terminal of human palladin (GeneID: information regarding hazards and safe handling 23022), conjugated to KLH. The corresponding practices. sequence is identical in rat and differs by 1 amino acid in mouse. Whole serum is purified using protein A Storage/Stability immobilized on agarose to provide the IgG fraction of Store at –20 C. For continuous use, store at 2–8 C for antiserum. up to one month. For extended storage, freeze at –20 C in working aliquots. Repeated freezing and Anti-Palladin (C-terminal) recognizes human palladin. thawing, or storage in “frost-free” freezers, is not The antibody may be used in various immunochemical recommended. If slight turbidity occurs upon prolonged techniques including immunoblotting (140/90 kDa), storage, clarify the solution by centrifugation before immunoprecipitation, and immunofluorescence. use. Working dilution samples should be discarded if Detection of the palladin band by immunoblotting is not used within 12 hours. specifically inhibited by the immunizing peptide. A non-specific band of 55 kDa may be detected in some Product Profile cell extract preparations. Immunoblotting: a working antibody dilution of 1:250-1:500 is recommended using whole extracts of Palladin is a component of actin-containing human HeLa cells. microfilaments that control cell shape, adhesion, and contraction.
    [Show full text]
  • Akt Inhibitors in Cancer Treatment: the Long Journey from Drug Discovery to Clinical Use (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 48: 869-885, 2016 Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review) GeORGe MIHAI NITUleSCU1, DeNISA MARGINA1, PeTRAS JUzeNAS2, QIAN PeNG2, OctavIAN TUDORel OlARU1, eMMANOUIl SAlOUSTROS3, CONCETTINA FENGA4, DeMeTRIOS Α. Spandidos5, MASSIMO lIBRA6 and ARISTIDIS M. Tsatsakis7 1Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania; 2Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway; 3Oncology Unit, General Hospital of Heraklion ‘venizelio’, Heraklion 71409, Greece; 4Section of Occupational Medicine, University of Messina, I‑98125 Messina, Italy; 5Department of virology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece; 6Department of Biomedical and Biotechnological Sciences, General and Clinical Pathology and Oncology Section, University of Catania, I‑95124 Catania, Italy; 7Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece Received November 17, 2015; Accepted December 24, 2015 DOI: 10.3892/ijo.2015.3306 Abstract. Targeted cancer therapies are used to inhibit the importance of each chemical scaffold. We explore the pipeline growth, progression, and metastasis of the tumor by interfering of Akt inhibitors and their preclinical and clinical examina- with specific molecular targets and are currently the focus of tion status, presenting the potential clinical application of these anticancer drug development.
    [Show full text]
  • Absence of Deleterious Palladin Mutations in Patients with Familial Pancreatic Cancer
    1328 Null Results in Brief Absence of Deleterious Palladin Mutations in Patients with Familial Pancreatic Cancer Alison P. Klein,3,4 Michael Borges,1 Margaret Griffith,1 Kieran Brune,1 Seung-Mo Hong,1 Noriyuki Omura,1 Ralph H. Hruban,1,3 and Michael Goggins1,2,3 Departments of 1Pathology, 2Medicine, and 3Oncology, The Johns Hopkins University School of Medicine, and 4Department of Epidemiology, the Bloomberg School of Public Health, The Sol Goldman Pancreatic Research Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland Abstract It has been reported that germline mutations in pancreatic cancer. We did not find any deleterious the palladin gene (PALLD) cause the familial aggre- mutations and find no evidence to implicate muta- gation of pancreatic cancer, but the evidence is tions in PALLD as a cause of familial pancreatic weak and controversial. We sequenced the coding cancer. (Cancer Epidemiol Biomarkers Prev 2009; regions of PALLD in 48 individuals with familial 18(4):1328–30) Introduction Brentnall et al. (1) identified a germline missense Materials and Methods alteration (P239S) in the palladin gene (PALLD)ina familial pancreatic cancer kindred and suggested that Forty-eight unrelated patients with familial pancreatic this variant may be a cause of the familial clustering cancer, defined as individuals with at least two first- of pancreatic cancer. Members of the kindred, known degree relatives with pancreatic cancer, were selected as family X, develop an early onset pancreatic cancer, from the National Familial Pancreatic Tumor Registry (9) with pancreatic insufficiency and diabetes mellitus in for analysis. DNA was obtained from EBV-transformed an autosomal dominant fashion (2) and have signifi- lymphocyte cell lines as previously described (10).
    [Show full text]
  • Myotilin, a New Topotecan Resistant Protein in Ovarian Cancer Cell Lines
    Journal of Cancer 2018, Vol. 9 4413 Ivyspring International Publisher Journal of Cancer 2018; 9(23): 4413-4421. doi: 10.7150/jca.27342 Research Paper Myotilin, a New Topotecan Resistant Protein in Ovarian Cancer Cell Lines Karolina Sterzyńska1*, Andrzej Klejewski2,3*, Karolina Wojtowicz1, Monika Świerczewska1, Michał Nowicki1, Jacek Brązert3 and Radosław Januchowski1 1. Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland 2. Department of Nursing, Poznan University of Medical Sciences, Poznań, Poland 3. Department of Obstetrics and Women’s Diseases, Poznan University of Medical Sciences, Poznań, Poland *These authors have contributed equally Corresponding author: Karolina Sterzyńska, mailing address: Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., post code 61-781, Poznań, Poland; email address: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.05.18; Accepted: 2018.08.24; Published: 2018.10.22 Abstract Background: Low effectiveness of chemotherapy in ovarian cancer results from development of drug resistance during treatment. Topotecan (TOP) is a chemotherapeutic drug used in second-line chemotherapy of this cancer. Unfortunately, during treatment cancer can develop diverse cellular and tissue specific mechanisms of resistance to cytotoxic drugs. Methods: We analyzed development of TOP resistance in ovarian cancer cell lines (A2780 and W1). On the base of our previous results where a set of “new genes” with different functions that can be related to TOP-resistance was described hereby we performed detailed analysis of MYOT expression.
    [Show full text]
  • The Role of Palladin in Podocytes
    BASIC RESEARCH www.jasn.org The Role of Palladin in Podocytes Nadine Artelt,1 Tim A. Ludwig,1 Henrik Rogge,1 Panagiotis Kavvadas,2 Florian Siegerist ,1 Antje Blumenthal,1 Jens van den Brandt,3 Carol A. Otey,4 Marie-Louise Bang,5,6 Kerstin Amann,7 Christos E. Chadjichristos,2 Christos Chatziantoniou ,2 Karlhans Endlich ,1 and Nicole Endlich1 1Department of Anatomy and Cell Biology and 3Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany; 2National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France; 4Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina; 5Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Milan, Italy; 6Humanitas Clinical and Research Center, Rozzano, Milan, Italy; and 7Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany ABSTRACT Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein. Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also inves- tigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld2/2 mice) by immunoflu- orescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin.
    [Show full text]
  • Genome Wide Association and Gene Enrichment Analysis Reveal Membrane Anchoring and Structural Proteins Associated with Meat Quality in Beef Joel D
    Leal-Gutiérrez et al. BMC Genomics (2019) 20:151 https://doi.org/10.1186/s12864-019-5518-3 RESEARCHARTICLE Open Access Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef Joel D. Leal-Gutiérrez*, Mauricio A. Elzo, D. Dwain Johnson, Heather Hamblen and Raluca G. Mateescu Abstract Background: Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. Results: The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server.
    [Show full text]
  • Palladin Isoforms 3 and 4 Regulate Cancer-Associated Fibroblast Pro
    www.nature.com/scientificreports OPEN Palladin isoforms 3 and 4 regulate cancer‑associated fbroblast pro‑tumor functions in pancreatic ductal adenocarcinoma J. I. Alexander1,2, D. B. Vendramini‑Costa1, R. Francescone1, T. Luong1, J. Franco‑Barraza1, N. Shah1, J. C. Gardiner1, E. Nicolas1, K. S. Raghavan1,2 & E. Cukierman 1* Pancreatic Ductal Adenocarcinoma (PDAC) has a fve‑year survival under 10%. Treatment is compromised due to a fbrotic‑like stromal remodeling process, known as desmoplasia, which limits therapeutic perfusion, supports tumor progression, and establishes an immunosuppressive microenvironment. These processes are driven by cancer‑associated fbroblasts (CAFs), functionally activated through transforming growth factor beta1 (TGFβ1). CAFs produce a topographically aligned extracellular matrix (ECM) that correlates with reduced overall survival. Paradoxically, ablation of CAF populations results in a more aggressive disease, suggesting CAFs can also restrain PDAC progression. Thus, unraveling the mechanism(s) underlying CAF functions could lead to therapies that reinstate the tumor‑suppressive features of the pancreatic stroma. CAF activation involves the f‑actin organizing protein palladin. CAFs express two palladin isoforms (iso3 and iso4) which are up‑regulated in response to TGFβ1. However, the roles of iso3 and iso4 in CAF functions remain elusive. Using a CAF‑derived ECM model, we uncovered that iso3/iso4 are required to sustain TGFβ1‑dependent CAF activation, secrete immunosuppressive cytokines, and produce a pro‑tumoral ECM. Findings demonstrate a novel role for CAF palladin and suggest that iso3/iso4 regulate both redundant and specifc tumor‑supportive desmoplastic functions. This study highlights the therapeutic potential of targeting CAFs to restore fbroblastic anti‑tumor activity in the pancreatic microenvironment.
    [Show full text]
  • Novel Insights on Functions of the Myotilin/Palladin Family Members
    Helsinki University Biomedical Dissertation No. 114 Novel insights on functions of the myotilin/palladin family members Monica Moza Program of Molecular Neurology Department of Pathology Faculty of Medicine University of Helsinki Finland Academic dissertation To be publicly discussed with the permission of the Faculty of Medicine of the University of Helsinki, in the small lecture hall, Haartman Institute, on November 14th, 2008, at 12 noon. Helsinki 2008 Thesis supervisor: Professor Olli Carpén, M.D., Ph.D. Department of Pathology University of Turku and Turku University Hospital Program of Molecular Neurology, Biomedicum Helsinki Department of Pathology, University of Helsinki Helsinki, Finland Thesis reviewers: Professor Hannu Kalimo, M.D., Ph.D. Department of Pathology, University of Helsinki Helsinki, Finland Professor Jari Ylänne, Ph.D. Department of Biological and Environmental Science University of Jyväskylä Jyväskylä, Finland Thesis opponent: Professor Rolf Schröder, M.D., Ph.D. Department of Neuropathology University of Erlangen Erlangen, Germany ISBN 978-952-10-5096-1 (paperback) ISBN 978-952-10-5097-8 (PDF) ISSN 1457-8433 2 CONTENTS LIST OF ORIGINAL PUBLICATIONS 5 ABREVIATIONS 6 ABSTRACT 8 REVIEW OF THE LITERATURE 10 1. Cytoskeleton 10 1.1 Structural and functional differences between striated muscle, smooth muscle and non-muscle cytoskeleton 10 2. Actin cytoskeleton 11 2.1. Actin 11 2.2. Actin-associated proteins 11 2.3. Immunoglobulin-like domain containing proteins 14 3. Skeletal muscle structure and function 15 3.1 Z-disk. Structure, function, components 18 3.1.1 α-Actinin 18 3.1.2. Myotilin, myopalladin and palladin 19 3.1.3. ZASP/Cypher 24 3.1.4.
    [Show full text]
  • Characterization of Β1 Integrin Cytoplasmic Domain Binding Proteins
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Characterization of β1 Integrin Cytoplasmic Domain Binding Proteins Hao-Ven Wang aus Hsin-Chu, Taiwan 2008 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Reinhard Fässler betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 07.04.2008 ------------------------------- (Hao-Ven Wang) Dissertation eingereicht am 10.04.2008 1. Gutachter: Prof. Dr. Reinhard Fässler 2. Gutachter: PD. Dr. Stefan Weiss Mündliche Prüfung am 11.06.2008 Table of Contents 1 Table of Contents 1 Table of Contents....................................................................................... I 2 List of Publications ................................................................................... II 3 Abbreviations ........................................................................................... III 4 Summary.................................................................................................... 1 5 Introduction ............................................................................................... 4 5.1 Integrins ................................................................................................. 4 5.1.1 Integrin activation ................................................................................................ 7 5.1.1.1 The structure and
    [Show full text]
  • Palladin Is a Neuron-Specific Translational Target of Mtor Signaling That Regulates Axon Morphogenesis
    The Journal of Neuroscience, May 23, 2018 • 38(21):4985–4995 • 4985 Cellular/Molecular Palladin Is a Neuron-Specific Translational Target of mTOR Signaling That Regulates Axon Morphogenesis Yusuke Umegaki,1,2 Antonio Martı´nez Brotons,1,2 Yui Nakanishi,1,2 Zhongyue Luo,1,2 Hanlu Zhang,1,2 XAzad Bonni,3 and X Yoshiho Ikeuchi1,2 1Institute of Industrial Science, and 2Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8505, Japan, and 3Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110 The mTOR signaling pathway regulates protein synthesis and diverse aspects of neuronal morphology that are important for brain development and function. To identify proteins controlled translationally by mTOR signaling, we performed ribosome profiling analyses in mouse cortical neurons and embryonic stem cells upon acute mTOR inhibition. Among proteins whose translation was significantly affected by mTOR inhibition selectively in neurons, we identified the cytoskeletal regulator protein palladin, which is localized within the cell body and axons in hippocampal neurons. Knockdown of palladin eliminated supernumerary axons induced by suppression of the tuberous sclerosis complex protein TSC1 in neurons, demonstrating that palladin regulates neuronal morphogenesis downstream of mTOR signaling. Our findings provide novel insights into an mTOR-dependent mechanism that controls neuronal morphogenesis through translational regulation. Key words: axon; palladin; ribosome; translation Significance Statement This study reports the discovery of neuron-specific protein translational responses to alterations of mTOR activity. By using ribosome profiling analysis, which can reveal the location and quantity of translating ribosomes on mRNAs, multiple aspects of protein translation were quantitatively analyzed in mouse embryonic stem cells and cortical neurons upon acute mTOR inhibi- tion.
    [Show full text]