Ls-Dyna Theoretical Manual

Total Page:16

File Type:pdf, Size:1020Kb

Ls-Dyna Theoretical Manual LS-DYNA THEORETICAL MANUAL May 1998 Copyright © 1991-1998 LIVERMORE SOFTWARE TECHNOLOGY CORPORATION All Rights Reserved Compiled By John O. Hallquist Mailing Address: Livermore Software Technology Corporation 2876 Waverley Way Livermore, California 94550-1740 Support Address: Livermore Software Technology Corporation 97 Rickenbacker Circle Livermore, California 94550-7612 FAX: 925-449-2507 TEL: 925-449-2500 EMAIL: [email protected] WEBSITE: www.lstc.com Copyright © 1991-1998 by Livermore Software Technology Corporation All Rights Reserved LS-DYNA Theoretical Manual Table of Contents TABLE OF CONTENTS ABSTRACT ......................................................................................................................... 1.1 1. INTRODUCTION.............................................................................................................. 1.1 1.1 History of LS-DYNA ................................................................................................... 1.1 1.2 Acknowledgments........ ...............................................................................................1.10 2. PRELIMINARIES........ ..................................................................................................... 2.1 2.1 Governing Equations .................................................................................................... 2.1 3. SOLID ELEMENTS .......................................................................................................... 3.1 3.1 Volume Integration ...................................................................................................... 3.3 3.2 Hourglass Control........................................................................................................ 3.4 3.3 Fully Integrated Brick Elements ......................................................................................3.9 3.4 Fully Integrated Brick Element With 48 Degrees-of-Freedom ...............................................3.10 3.5 Tetrahedron Element With 12 Degrees-of-Freedom............................................................. 3.13 3.6 Fully Integrated Tetrahedron Element With 24 Degrees-of-Freedom....................................... 3.14 3.7 Integral Difference Scheme as Basis For 2D Solids ............................................................3.17 3.8 Rezoning With 2D Solid Elements................................................................................. 3.23 4. BELYTSCHKO BEAM ...................................................................................................... 4.1 4.1 Co-Rotational Technique ............................................................................................. 4.1 4.2 Belytschko Beam Element Formulation ..........................................................................4.5 4.2.1 Calculation of Deformations................................................................................ 4.6 4.2.2 Calculation of Internal Forces ..............................................................................4.7 4.2.3 Updating the Body Coordinate Unit Vectors............................................................ 4.9 5. HUGHES-LIU BEAM ........................................................................................................ 5.1 5.1 Geometry.................................................................................................................. 5.1 5.2 Fiber Coordinate System ............................................................................................. 5.6 5.2.1 Local Coordinate System ....................................................................................5.7 5.3 Strains and Stress Update ............................................................................................. 5.8 5.3.1 Incremental Strain and Spin Tensors ..................................................................... 5.8 5.3.2 Stress Update.................................................................................................... 5.8 5.3.3 Incremental Strain-Displacement Relations............................................................. 5.9 5.3.4 Spatial Integration ............................................................................................5.10 6. BELYTSCHKO-LIN-TSAY SHELL .....................................................................................6.1 6.1 Co-Rotational Coordinates............................................................................................. 6.1 6.2 Velocity-Strain Displacement Relations ...........................................................................6.3 6.3 Stress Resultants and Nodal Forces.................................................................................. 6.5 6.4 Hourglass Control (Belytschko-Lin-Tsay) .........................................................................6.6 iii Table of Contents LS-DYNA Theoretical Manual 6.5 Hourglass Control (Englemann and Whirley)..................................................................... 6.8 6.6 Belytschko-Wong-Chiang Improvement ..........................................................................6.10 7. C0 TRIANGULAR SHELL........ ......................................................................................... 7.1 7.1 Co-Rotational Coordinates............................................................................................. 7.1 7.2 Velocity-Strain Relations .............................................................................................. 7.2 7.3 Stress Resultants and Nodal Forces.................................................................................. 7.6 8. MARCHERTAS-BELYTSCHKO TRIANGULAR SHELL ....................................................... 8.1 8.1 Element Coordinates..................................................................................................... 8.1 8.2 Displacement Interpolation ............................................................................................ 8.3 8.3 Strain-Displacement Relations........................................................................................ 8.5 8.4 Nodal Force Calculations............................................................................................... 8.6 9. HUGHES-LIU SHELL ....................................................................................................... 9.1 9.1 Geometry ................................................................................................................... 9.1 9.2 Kinematics ................................................................................................................. 9.4 9.2.1 Fiber Coordinate System ......................................................................................9.5 9.2.2 Lamina Coordinate System ...................................................................................9.8 9.3 Strains and Stress Update............................................................................................... 9.9 9.3.1 Incremental Strain and Spin Tensors .......................................................................9.9 9.3.2 Stress Update ....................................................................................................9.10 9.3.3 Incremental Strain-Displacement Relations .............................................................9.10 9.4 Element Mass Matrix................................................................................................. 9.12 9.5 Accounting for Thickness Changes ...............................................................................9.13 9.6 Fully Integrated Hughes-Liu Shells............................................................................... 9.13 10. EIGHT-NODE SOLID SHELL ELEMENT.......................................................................... 10.1 11. TRUSS ELEMENT......................................................................................................... 11.1 12. MEMBRANE ELEMENT ................................................................................................12.1 12.1 Co-Rotational Coordinates......................................................................................... 12.1 12.2 Velocity-Strain Displacement Relations .......................................................................12.1 12.3 Stress Resultants and Nodal Forces.............................................................................. 12.2 12.4 Membrane Hourglass Control..................................................................................... 12.2 13. DISCRETE ELEMENTS AND MASSES ...........................................................................13.1 13.1 Orientation Vectors................................................................................................. 13.2 13.2 Dynamic Magnification “Strain Rate” Effects ..............................................................13.4 13.3 Deflection Limits in Tension and Compression............................................................ 13.4 13.4 Linear Elastic or Linear Viscous................................................................................ 13.5 13.5 Nonlinear Elastic or Nonlinear Viscous ......................................................................13.5 13.6 Elasto-Plastic With Isotropic Hardening...................................................................... 13.6 iv LS-DYNA Theoretical Manual Table of Contents 13.7 General Nonlinear .................................................................................................13.7
Recommended publications
  • Chapter 5: Derivatives and Integration
    Chapter 5: Derivatives and Integration Chandrajit Bajaj and Andrew Gillette October 22, 2010 Contents 1 Curvature Computations 2 2 Numerical and Symbolic Integration 2 2.1 Cubature Formulae Notation . .2 2.2 Constructing Cubature Formulae . .3 2.2.1 Interpolatory Cubature Formulae . .3 2.2.2 Ideal Theory . .4 2.2.3 Bounds . .5 2.2.4 The characterization of minimal formulae and the reproducing kernel . .5 2.3 Gauss Formula on an A-patch . .6 2.3.1 Gauss Points and Weights . .6 2.3.2 Error Analysis . .6 2.4 T-method . .7 2.5 S-method . .8 3 Generalized Born Electrostatics 9 3.1 Geometric model . 11 3.1.1 Gaussian surface . 11 3.1.2 Triangular mesh . 11 3.1.3 Algebraic spline molecular surface (ASMS) . 12 3.2 Fast solvation energy computation . 13 3.2.1 Method . 13 3.2.2 Fast summation . 15 3.2.3 Error analysis . 16 3.3 Fast solvation force computation . 20 3.4 Results . 23 3.4.1 Conclusion . 25 3.5 NFFT . 26 3.6 NFFTT ........................................... 29 3.7 Continuity of f ....................................... 32 4 Poisson Boltzmann Electrostatics 33 4.1 Motivation . 34 4.2 The Poisson-Boltzmann Equation . 35 4.2.1 Boundary Integral Formulation . 37 4.2.2 Discretization by the Collocation Method . 37 4.3 BEM for Molecular Surfaces . 38 4.3.1 Construction of the Molecular Surface . 40 1 4.3.2 Surface Parametrization . 40 4.3.3 Selection of Basis Functions . 41 4.3.4 Quadrature . 41 4.4 Polarization Energy Computation . 42 4.5 Implementation Details .
    [Show full text]
  • Elastic Plastic Fracture Mechanics Elastic Plastic Fracture Mechanics Presented by Calvin M
    Fracture Mechanics Elastic Plastic Fracture Mechanics Elastic Plastic Fracture Mechanics Presented by Calvin M. Stewart, PhD MECH 5390-6390 Fall 2020 Outline • Introduction to Non-Linear Materials • J-Integral • Energy Approach • As a Contour Integral • HRR-Fields • COD • J Dominance Introduction to Non-Linear Materials Introduction to Non-Linear Materials • Thus far we have restricted our fractured solids to nominally elastic behavior. • However, structural materials often cannot be characterized via LEFM. Non-Linear Behavior of Materials • Two other material responses are that the engineer may encounter are Non-Linear Elastic and Elastic-Plastic Introduction to Non-Linear Materials • Loading Behavior of the two materials is identical but the unloading path for the elastic plastic material allows for non-unique stress- strain solutions. For Elastic-Plastic materials, a generic “Constitutive Model” specifies the relationship between stress and strain as follows n tot =+ Ramberg-Osgood 0 0 0 0 Reference (or Flow/Yield) Stress (MPa) Dimensionaless Constant (unitless) 0 Reference (or Flow/Yield) Strain (unitless) n Strain Hardening Exponent (unitless) Introduction to Non-Linear Materials • Ramberg-Osgood Constitutive Model n increasing Ramberg-Osgood −n K = 00 Strain Hardening Coefficient, K = 0 0 E n tot K,,,,0 n=+ E Usually available for a variety of materials 0 0 0 Introduction to Non-Linear Materials • Within the context of EPFM two general ways of trying to solve fracture problems can be identified: 1. A search for characterizing parameters (cf. K, G, R in LEFM). 2. Attempts to describe the elastic-plastic deformation field in detail, in order to find a criterion for local failure.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • Universität Karlsruhe (TH) Institut Für Baustatik a Mixed Shell Formulation Accounting for Thickness Strains and Finite Strain
    Universit¨at Karlsruhe (TH) Institut fur¨ Baustatik A mixed shell formulation accounting for thickness strains and finite strain 3d-material models S. Klinkel, F. Gruttmann, W. Wagner Mitteilung 4(2006) BAUSTATIK Universit¨at Karlsruhe (TH) Institut fur¨ Baustatik A mixed shell formulation accounting for thickness strains and finite strain 3d-material models S. Klinkel, F. Gruttmann, W. Wagner Mitteilung 4(2006) BAUSTATIK Prof. Dr.–Ing. W. Wagner Telefon: (0721) 608–2280 Institut fur¨ Baustatik Telefax: (0721) 608–6015 c Universit¨at Karlsruhe E–mail: [email protected] Postfach 6980 Internet: http://www.bs.uni-karlsruhe.de 76128 Karlsruhe A mixed shell formulation accounting for thickness strains and finite strain 3d-material models Sven Klinkel∗, Friedrich Gruttmann+, Werner Wagner∗ ∗ Institut f¨ur Baustatik, Universit¨at Karlsruhe (TH), Kaiserstr. 12, 76131 Karlsruhe, Germany + Institut f¨ur Werkstoffe und Mechanik im Bauwesen, Technische Universit¨at Darmstadt, Petersenstr. 12, 64287 Darmstadt, Germany Contents 1 Introduction 2 2 Variational formulation of the shell equations 4 3 Finite Element Equations 6 3.1 Interpolation of the initial and current reference surface ............. 6 3.2 Interpolation of the stress resultants ........................ 9 3.3 Interpolation of the shell strains .......................... 9 3.4 Linearized variational formulation ......................... 11 4 Examples 13 4.1 Membrane and bending patch test ......................... 14 4.2 Channel section cantilever with plasticity ..................... 14 4.3 Stretching of a rubber sheet ............................ 16 4.4 Square plate ..................................... 19 4.5 Conical shell ..................................... 21 5 Conclusions 23 A Finite element matrices B and kσ 24 B Non-linear constitutive equations 25 B.1 Hyper-elastic material ............................... 25 B.2 Finite strain J2-plasticity model .........................
    [Show full text]
  • Functional RG Flow Equation: Regularization and Coarse-Graining
    Functional RG flow equation: regularization and coarse-graining in phase space G. P. Vacca∗ and L. Zambelli† Dip. di Fisica, Universit`adegli Studi di Bologna INFN Sez. di Bologna via Irnerio 46, I-40126 Bologna, Italy Abstract Starting from the basic path integral in phase space we reconsider the functional approach to the RG flow of the one particle irreducible effective average action. On employing a balanced coarse-graining procedure for the canonical variables we obtain a functional integral with a non trivial measure which leads to a modified flow equation. We first address quantum mechanics for boson and fermion degrees of freedom and we then extend the construction to quantum field theories. For this modified flow equation we discuss the reconstruction of the bare action and the implications on the computation of the vacuum energy density. 1 Introduction Renormalization analysis in quantum (and statistical) field theory is one of the main tools at our disposal to investigate non trivial theories. Both perturbative and non perturbative techniques have been developed. Some analytical results can be obtained starting from a functional formulation, where the generator of the correlation functions is written in terms of a functional (path) integral. The Wilsonian idea of renormalization [1], which started from the analysis of Kadanoff’s blocking and scaling of spin systems (more generally coarse-graining), can also be conve- niently formulated analytically in a functional integral formulation. The idea of a step by step integration of the quantum fluctuations typically belonging to a momentum shell, followed by rescaling, can be implemented in a smooth way [2, 3] and leads to a differential arXiv:1103.2219v2 [hep-th] 27 May 2011 equation for Wilson’s effective action as a function of the scale parameter.
    [Show full text]
  • Jhep09(2008)065
    Published by Institute of Physics Publishing for SISSA Received: May 6, 2008 Revised: August 14, 2008 Accepted: August 26, 2008 Published: September 11, 2008 From loops to trees by-passing Feynman’s theorem JHEP09(2008)065 Stefano Catani INFN, Sezione di Firenze and Dipartimento di Fisica, Universit`adi Firenze, I-50019 Sesto Fiorentino, Florence, Italy E-mail: [email protected] Tanju Gleisberg Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A. E-mail: [email protected] Frank Krauss Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, U.K. E-mail: [email protected] Germ´an Rodrigo Instituto de F´ısica Corpuscular, CSIC-Universitat de Val`encia, Apartado de Correos 22085, E-46071 Valencia, Spain E-mail: [email protected] Jan-Christopher Winter Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. E-mail: [email protected] Abstract: We derive a duality relation between one-loop integrals and phase-space inte- grals emerging from them through single cuts. The duality relation is realized by a modifica- tion of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. We discuss in detail the duality that relates one-loop and tree-level Green’s functions. We comment on applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.
    [Show full text]
  • Annales De L'ihp, Section A
    ANNALES DE L’I. H. P., SECTION A A. BASSETTO M. TOLLER Harmonic analysis on the one-sheet hyperboloid and multiperipheral inclusive distributions Annales de l’I. H. P., section A, tome 18, no 1 (1973), p. 1-38 <http://www.numdam.org/item?id=AIHPA_1973__18_1_1_0> © Gauthier-Villars, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré Section A : Vol. XVIII, no 1, 1973, 1 Physique théorique. Harmonic analysis on the one-sheet hyperboloid and multiperipheral inclusive distributions A. BASSETTO and M. TOLLER C. E. R. N., Geneva ABSTRACT. - The harmonic analysis of the n particle inclusive distri- butions and the partial diagonalization of the ABFST multiperipheral integral equation at vanishing momentum transfer are treated rigorously on the basis of the harmonic analysis of distributions defined on the one-sheet hyperboloid in four dimensions. A complete and consistent treatment is given of the Radon and Fourier transforms on the hyper- boloid and of the diagonalization of invariant kernels. The final result is a special form of the 0 (3, 1) expansion of the inclusive distributions, which exhibits peculiar dynamical features, in particular fixed poles. at the nonsense points, which are essential in order to get the experi- mentally observed behaviour.
    [Show full text]
  • Lecture Notes 9: Measure and Probability Part A: Measure and Integration
    Lecture Notes 9: Measure and Probability Part A: Measure and Integration Peter Hammond, based on early notes by Andr´esCarvajal September, 2011; latest revision September 2020, typeset from Probab20A.tex; Recommended textbooks for further reading: H.L. Royden Real Analysis; R.M. Dudley Real Analysis and Probability University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Outline Measures and Integrals Measurable Spaces Measure Spaces Lebesgue Integration Integrating Simple Functions Integrating Integrable Functions The Lebesgue Integral as an Antiderivative Leibnitz's Formula Revisited Products of Measure Spaces Definition The Gaussian Integral Circular Symmetry and Shell Integration University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 2 of 57 Power Sets Fix an abstract set S 6= ;. In case it is finite, its cardinality, denoted by #S, is the number of distinct elements of S. The power set of S is the family P(S) := fT j T ⊆ Sg of all subsets of S. Exercise Show that the mapping S P(S) 3 T 7! f (T ) 2 f0; 1g := fhxs is2S j 8s 2 S : xs 2 f0; 1gg defined by ( 1 if s 2 T f (T )s = 1T (s) = 0 if s 62 T is a bijection. University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 3 of 57 Constructing a Bijection Proof. S Evidently the mapping T 7! f (T ) = h1T (s)is2S 2 f0; 1g defines a unique point of the Cartesian product f0; 1gS for every T ⊆ S | i.e., for every T 2 P(S). S Conversely, for each hxs is2S 2 f0; 1g , there is a unique set T (hxs is2S ) = fs 2 S j xs = 1g Now, given this hxs is2S , for each r 2 S, one has ( 1 if xr = 1 1fs2Sjxs =1g(r) = 0 if xr = 0 So f (T (hxs is2S )) = h1fs2Sjxs =1g(r)ir2S = hxr ir2S .
    [Show full text]
  • List of Topics for Linear Algebra: Basic Analysis
    List of Topics for Linear Algebra: 1. Linear equations and matrices, reduction to row echelon form. 2. Vector spaces: 1. Vector spaces, subspaces, quotient spaces. 2. Linearly independent sets. 3. Linear transformations, 4. kernel and image, 5. projections (idempotent linear operators), 6. the set of linear transformations between two vector spaces forms a vector space. 7. Bases and dimension for finite dimensional vector spaces. 3. Matrices and linear transformations between finite dimensional vector spaces: 1. The matrix of a linear transformation with respect to a choice of bases, 2. similarity of matrices and change of basis for linear transformations. 3. The inverse of a matrix, 4. the determinant of a square matrix, 5. the characteristic polynomial, 6. the minimal polynomial, 7. eigenvectors, 8. eigenvalues. 9. Diagonalizability, 10. Cayley-Hamilton theorem. 11. Rank + nullity = dimension of domain. 4. Finite dimensional inner product spaces: 1. The standard positive definite inner product on real n-space, 2. length and angle, 3. Gram-Schmidt orthogonalization. Basic Analysis 1. Metric Spaces 1. Convergence of sequences in metric spaces 2. Cauchy sequences 3. completeness 4. contraction principle 2. Topological spaces 1. continuous maps 2. Hausdorff spaces 3. compactness 4. connectedness 3. The real numbers 1. The real numbers as a complete ordered field 2. closed bounded subsets are compact 3. intermediate value theorem 4. maxima and minima for continuous functions on a compact set 4. Differentiation 1. Differentiation of a function in one real variable 2. Mean Value Theorem 3. L'Hopital's Rule 4. Taylor's Theorem with error estimates 5. Riemann integration of functions in one real variable 1.
    [Show full text]
  • Reduced Dirac Equation and Lamb Shift As an Off-Mass-Shell Effect In
    Reduced Dirac Equation And Lamb Shift As An Off-mass-shell Effect In Quantum Electrodynamics Ni Guang-jiong a;b∗ a Department of Physics, Fudan University, Shanghai, 200433, China b Department of Physics, Portland State University, Portland, OR97207, U. S. A. Xu Jianjuny Department of Physics, Fudan University, Shanghai, 200433, China Lou Senyuec;dz c Department of Physics, Shanghai Jiao Tong University, Shanghai, 200030, China d Department of Physics, Ningbo University, Ningbo 315211, China (Dated: October 16, 2018) Based on the precision experimental data of energy-level differences in hydrogenlike atoms, especially the 1S − 2S transition of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for reduced Dirac equation to arXiv:quant-ph/0511197v3 19 Jul 2010 have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state{a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity. Keywords: Reduced Dirac Equation, Lamb shift, off-mass-shell 2 PACC: 0365, 1110G, 1220D I. INTRODUCTION As is well known, the Dirac equation for electron in a hydrogenlike atom is usually treated as a one-body equation with the nucleus being an inert core having infinite mass and exerting Zα a potential V (r) = − r (~ = c = 1) on the electron.
    [Show full text]
  • Convergence and Divergence in Spherical Harmonic Series of the 2 Gravitational Field Generated by High‐Resolution Planetary Topography – a Case Study for the Moon
    1 Citation: Hirt, C. and M. Kuhn (2017), Convergence and divergence in spherical harmonic series of the 2 gravitational field generated by high‐resolution planetary topography – a case study for the Moon. Accepted 3 for publication in Journal of Geophysical Research – Planets, 122, doi:10.1002/2017JE005298. 4 Convergence and divergence in spherical harmonic series of the gravitational 5 field generated by high‐resolution planetary topography – a case study for 6 the Moon 7 Christian Hirt1 and Michael Kuhn2 8 1Institute for Astronomical and Physical Geodesy & Institute for Advanced Study, 9 Technische Universität München, Arcisstr 21, 80333 München, Germany 10 2Western Australian Geodesy Group & Department of Spatial Sciences 11 Curtin University Perth, GPO Box U1987, Perth, 6845, Western Australia 12 13 Key points 14 New systematic experiments reveal behaviour of spherical harmonic series near the Moon’s 15 topography as function of resolution and altitude 16 Gravity from degree‐180 models free of divergence, degree‐360 models partially divergent and 17 degree‐2160 models severely divergent 18 New hypothesis: Local minimum in potential degree variances foreshadows series divergence 19 inside the Brillouin‐sphere 20 Abstract 21 Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are 22 guaranteed to converge outside the Brillouin‐sphere enclosing all field‐generating masses. Inside that 23 sphere, the series may be convergent or may be divergent. The series convergence behaviour is a 24 highly unstable quantity that is little studied for high‐resolution mass distributions. 25 Here we shed light on the behaviour of SH series expansions of the gravitational potential of the 26 Moon.
    [Show full text]
  • Fracture Mechanics - Calculations
    Fracture Mechanics - Calculations • Theory for calculations of severity of crack. • FEM – J integrals for plane problems. • Special Finite Elements + video of crack process • FEM – J integrals for 3-D problems. 1 Conclusion of continuum exercise • At sharp edges there is a stress singularity • The stresses go to infinity • The strain energy density is limited • The magnitude of the stress singularity determines the strain energy density or the stress intensity factor K • Stress intensity factors should not be confused with stress concentration factors. 2 Stress Intensity Factor for a small crack with a length of a: For a very small 3 The crack singularity - polar coordinates Stress state around crack (Continuum Mechanics) 4 Mode I - Opening mode Stresses depend on inverse of squareroot of r - singularity Singularity dominates at the crack tip - C11 depends on external load Symmetric solution. 5 Mode II - Shearing mode Stresses depend on inverse of squareroot of r - singularity Singularity dominates at the crack tip - C21 depends on external load Antimetric solution. 6 Reformulation of parameters The D1 is the case with out-of-plane shear (torsion mode). 7 How to find the singularity? Structure with crack is analysed by means of superposition 8 Structure without crack + stresses on crack Crack is closed and stresses will be finite. The stresses on the crack is easily calculated (FEM – hand calculation) 9 Calculation of singularity 10 Singular part - Infinite stresses The infinite stress state around the crack can be found by Analytically solution for a crack in an infinite plate subjected to - 2 opposite point forces (normal or shear direction) Integration of analytically solution In this way many analytical or semianalytical solutions have been found.
    [Show full text]