29 CFR Ch. XVII (7–1–09 Edition)

Total Page:16

File Type:pdf, Size:1020Kb

29 CFR Ch. XVII (7–1–09 Edition) § 1926.303 29 CFR Ch. XVII (7–1–09 Edition) (11) All tools shall be used with the shall be strong enough to withstand correct shield, guard, or attachment the effect of a bursting wheel. recommended by the manufacturer. (2) Floor and bench-mounted grinders (12) Powder-actuated tools used by shall be provided with work rests employees shall meet all other applica- which are rigidly supported and readily ble requirements of American National adjustable. Such work rests shall be Standards Institute, A10.3–1970, Safety kept at a distance not to exceed one- Requirements for Explosive-Actuated eighth inch from the surface of the Fastening Tools. wheel. [44 FR 8577, Feb. 9, 1979; 44 FR 20940, Apr. 6, (3) Cup type wheels used for external 1979, as amended at 58 FR 35175, June 30, 1993] grinding shall be protected by either a revolving cup guard or a band type § 1926.303 Abrasive wheels and tools. guard in accordance with the provi- (a) Power. All grinding machines sions of the American National Stand- shall be supplied with sufficient power ards Institute, B7.1–1970 Safety Code to maintain the spindle speed at safe for the Use, Care, and Protection of Ab- levels under all conditions of normal rasive Wheels. All other portable abra- operation. sive wheels used for external grinding, (b) Guarding. (1) Grinding machines shall be provided with safety guards shall be equipped with safety guards in (protection hoods) meeting the require- conformance with the requirements of ments of paragraph (c)(5) of this sec- American National Standards Insti- tion, except as follows: tute, B7.1–1970, Safety Code for the Use, (i) When the work location makes it Care and Protection of Abrasive impossible, a wheel equipped with safe- Wheels, and paragraph (d) of this sec- ty flanges, as described in paragraph tion. (c)(6) of this section, shall be used; (2) Guard design. The safety guard (ii) When wheels 2 inches or less in shall cover the spindle end, nut, and diameter which are securely mounted flange projections. The safety guard on the end of a steel mandrel are used. shall be mounted so as to maintain (4) Portable abrasive wheels used for proper alignment with the wheel, and internal grinding shall be provided the strength of the fastenings shall ex- with safety flanges (protection flanges) ceed the strength of the guard, except: meeting the requirements of paragraph (i) Safety guards on all operations (c)(6) of this section, except as follows: where the work provides a suitable measure of protection to the operator, (i) When wheels 2 inches or less in di- may be so constructed that the spindle ameter which are securely mounted on end, nut, and outer flange are exposed; the end of a steel mandrel are used; and where the nature of the work is (ii) If the wheel is entirely within the such as to entirely cover the side of the work being ground while in use. wheel, the side covers of the guard may (5) When safety guards are required, be omitted; and they shall be so mounted as to main- (ii) The spindle end, nut, and outer tain proper alignment with the wheel, flange may be exposed on machines de- and the guard and its fastenings shall signed as portable saws. be of sufficient strength to retain frag- (c) Use of abrasive wheels. (1) Floor ments of the wheel in case of acci- stand and bench mounted abrasive dental breakage. The maximum angu- wheels, used for external grinding, lar exposure of the grinding wheel pe- shall be provided with safety guards riphery and sides shall not exceed 180°. (protection hoods). The maximum an- (6) When safety flanges are required, gular exposure of the grinding wheel they shall be used only with wheels de- periphery and sides shall be not more signed to fit the flanges. Only safety than 90°, except that when work re- flanges, of a type and design and prop- quires contact with the wheel below erly assembled so as to ensure that the the horizontal plane of the spindle, the pieces of the wheel will be retained in angular exposure shall not exceed 125°. case of accidental breakage, shall be In either case, the exposure shall begin used. not more than 65° above the horizontal (7) All abrasive wheels shall be close- plane of the spindle. Safety guards ly inspected and ring-tested before 238 VerDate Nov<24>2008 14:57 Aug 03, 2009 Jkt 217116 PO 00000 Frm 00248 Fmt 8010 Sfmt 8010 Y:\SGML\217116.XXX 217116 cprice-sewell on DSKDVH8Z91PROD with CFR Occupational Safety and Health Admin., Labor § 1926.304 mounting to ensure that they are free the feed rolls or other moving parts from cracks or defects. covered or guarded so as to protect the (8) Grinding wheels shall fit freely on operator from hazardous points. the spindle and shall not be forced on. (d) Guarding. All portable, power- The spindle nut shall be tightened only driven circular saws shall be equipped enough to hold the wheel in place. with guards above and below the base (9) All employees using abrasive plate or shoe. The upper guard shall wheels shall be protected by eye pro- cover the saw to the depth of the teeth, tection equipment in accordance with except for the minimum arc required the requirements of subpart E of this to permit the base to be tilted for bevel part, except when adequate eye protec- cuts. The lower guard shall cover the tion is afforded by eye shields which saw to the depth of the teeth, except are permanently attached to the bench for the minimum arc required to allow or floor stand. proper retraction and contact with the (d) Other requirements. All abrasive work. When the tool is withdrawn from wheels and tools used by employees the work, the lower guard shall auto- shall meet other applicable require- matically and instantly return to the ments of American National Standards covering position. Institute, B7.1–1970, Safety Code for the (e) Personal protective equipment. All Use, Care and Protection of Abrasive personal protective equipment pro- Wheels. vided for use shall conform to subpart (e) Work rests. On offhand grinding E of this part. machines, work rests shall be used to (f) Other requirements. All wood- support the work. They shall be of working tools and machinery shall rigid construction and designed to be meet other applicable requirements of adjustable to compensate for wheel American National Standards Insti- wear. Work rests shall be kept adjusted tute, 01.1–1961, Safety Code for Wood- closely to the wheel with a maximum working Machinery. 1 opening of ⁄8 inch (0.3175 cm) to pre- (g) Radial saws. (1) The upper hood vent the work from being jammed be- shall completely enclose the upper por- tween the wheel and the rest, which tion of the blade down to a point that may cause wheel breakage. The work will include the end of the saw arbor. rest shall be securely clamped after The upper hood shall be constructed in each adjustment. The adjustment shall such a manner and of such material not be made with the wheel in motion. that it will protect the operator from [44 FR 8577, Feb. 9, 1979; 44 FR 20940, Apr. 6, flying splinters, broken saw teeth, etc., 1979, as amended at 58 FR 35175, June 30, 1993] and will deflect sawdust away from the operator. The sides of the lower ex- § 1926.304 Woodworking tools. posed portion of the blade shall be (a) Disconnect switches. All fixed guarded to the full diameter of the power driven woodworking tools shall blade by a device that will automati- be provided with a disconnect switch cally adjust itself to the thickness of that can either be locked or tagged in the stock and remain in contact with the off position. stock being cut to give maximum pro- (b) Speeds. The operating speed shall tection possible for the operation being be etched or otherwise permanently performed. marked on all circular saws over 20 (h) Hand-fed crosscut table saws. (1) inches in diameter or operating at over Each circular crosscut table saw shall 10,000 peripheral feet per minute. Any be guarded by a hood which shall meet saw so marked shall not be operated at all the requirements of paragraph (i)(1) a speed other than that marked on the of this section for hoods for circular blade. When a marked saw is reten- ripsaws. sioned for a different speed, the mark- (i) Hand-fed ripsaws. (1) Each circular ing shall be corrected to show the new hand-fed ripsaw shall be guarded by a speed. hood which shall completely enclose (c) Self-feed. Automatic feeding de- that portion of the saw above the table vices shall be installed on machines and that portion of the saw above the whenever the nature of the work will material being cut. The hood and permit. Feeder attachments shall have mounting shall be arranged so that the 239 VerDate Nov<24>2008 14:57 Aug 03, 2009 Jkt 217116 PO 00000 Frm 00249 Fmt 8010 Sfmt 8010 Y:\SGML\217116.XXX 217116 cprice-sewell on DSKDVH8Z91PROD with CFR.
Recommended publications
  • Hand Saws Hand Saws Have Evolved to fill Many Niches and Cutting Styles
    Source: https://www.garagetooladvisor.com/hand-tools/different-types-of-saws-and-their-uses/ Hand Saws Hand saws have evolved to fill many niches and cutting styles. Some saws are general purpose tools, such as the traditional hand saw, while others were designed for specific applications, such as the keyhole saw. No tool collection is complete without at least one of each of these, while practical craftsmen may only purchase the tools which fit their individual usage patterns, such as framing or trim. Back Saw A back saw is a relatively short saw with a narrow blade that is reinforced along the upper edge, giving it the name. Back saws are commonly used with miter boxes and in other applications which require a consistently fine, straight cut. Back saws may also be called miter saws or tenon saws, depending on saw design, intended use, and region. Bow Saw Another type of crosscut saw, the bow saw is more at home outdoors than inside. It uses a relatively long blade with numerous crosscut teeth designed to remove material while pushing and pulling. Bow saws are used for trimming trees, pruning, and cutting logs, but may be used for other rough cuts as well. Coping Saw With a thin, narrow blade, the coping saw is ideal for trim work, scrolling, and any other cutting which requires precision and intricate cuts. Coping saws can be used to cut a wide variety of materials, and can be found in the toolkits of everyone from carpenters and plumbers to toy and furniture makers. Crosscut Saw Designed specifically for rough cutting wood, a crosscut saw has a comparatively thick blade, with large, beveled teeth.
    [Show full text]
  • Abrasive Wheel Grinder Abrasive Wheels and Grinding Machines Come in Many Styles, Sizes, and Designs
    Abrasive wheel grinder Abrasive wheels and grinding machines come in many styles, sizes, and designs. Both bench-style and pedestal (stand) grinders are commonly found in many industries. These grinders often have either two abrasive wheels, or one abrasive wheel and one special-purpose wheel such as a wire brush, buffing wheel, or sandstone wheel. These types of grinders normally come with the manufacturer’s safety guard covering most of the wheel, including the spindle end, nut, and flange DEWALT Industrial Tool Co. projection. These guards must be strong enough to withstand the effects of a bursting wheel. In addi- tion, a tool/work rest and transparent shields are often provided. Hazard Bench-style and pedestal grinders create special safety problems due to the potential of the abrasive wheel shattering; exposed rotating wheel, flange, and spindle end; and a naturally occurring nip point that is created by the tool/work rest. This is in addition to such concerns as flying fragments, sparks, air contaminants, etc. Cutting, polishing, and wire buffing wheels can create many of the same hazards. Grinding machines are powerful and are designed Exposed spindle end, flange, and nut. No tool/workrest. to operate at very high speeds. If a grinding wheel shatters while in use, the fragments can travel at more than 300 miles per hour. In addition, the wheels found on these machines (abrasive, polishing, wire, etc.) often rotate at several thousand rpms. The potential for serious injury from shooting fragments and the rotating wheel assemblies (including the flange, spindle end, and nut) is great. To ensure that grinding wheels are safely used in your work- place, know the hazards and how to control them.
    [Show full text]
  • Place the Gouge in the Third Station of the Sharpening Guide and Lay the Side of the Gouge Against the Left Wall of the Station (Figure 24-12)
    Figure 24-14.Position the roundnose chisel, Figure 24-13.Set the parting tool’s side in bevel up in the fourth station. Tighten the the first station. knob. Place the gouge in the third station of the sharpening guide and lay the side of the gouge against the left wall of the station (Figure 24-12). Rotate the gouge until its center touches the abrasive. With the machine "OFF" practice rotating the gouge, first clockwise from the center to the edge, and then counterclockwise from the center of the gouge to the edge. You should notice while rotating the gouge that in order to keep the bevel in contact with the abrasive, you must slide the gouge forward on the station as the bevel is ground from the center to each edge. After you get the feel of this grinding motion, be sure the gouge is not touching the abrasive and the speed dial is set to "Slow" (if you are using the Mark V), then turn on the machine. Gently slide the gouge against the wall of the station and into the moving abrasive. Start rotating the gouge, like you practiced. Repeat this several times. Grind away only enough metal to remove any damage to the cut-ting edge and create a slight burr. If the gouge is being ground for scraping, it is ready to use (the burr is sharp and scrapes very well). If the gouge is being ground for shearing or cutting, it will need to be honed to a razor sharp edge. Grinding the Parting Tool— The parting tool has a bevel ground on both the top and bottom edges.
    [Show full text]
  • Tuning Metal Bench Planes for the Rest of Us by Chris Black
    Tuning Metal Bench Planes for the Rest of Us By Chris Black It’s an unfortunate reality that most metal bench planes don’t work to their full potential right out of the box, and that a certain amount of tuning needs to be done by the end user. With apologies to all engineer/machinist woodworkers, I will endeavor to explain how to tune a metal bench plane without involving a machine shop or taking up vast amounts of your valuable woodworking time or money. I’ll leave out the small stuff like after market blades and accessories. This is by no means the final word on this subject, but maybe you can pick up a thing or two from my many years of making a living with these wonderful tools. If you find my methods rudimentary or crude, let me paraphrase Jim Krenov who said at some point the engineer and artisan must part ways. SHARPEN THE IRON If there’s a given principle in woodworking, it must be sharp tools. If your steel isn’t keen, not much happens. Learn to sharpen and everything else in woodworking will begin to fall into place. 80% of all plane problems can be fixed by getting your irons as sharp as possible. There’s a ton of information about sharpening out there, but stick with the basics and worry about other stuff like cambered edges and different bevel angles later. I recommend Thomas Lie-Nielsen’s book Complete Illustrated Guide to Sharpening (202299), Leonard Lee’s Complete Guide to Sharpening (200831), or Jim Kingshott’s video Sharpening the Professional Way (221508).
    [Show full text]
  • How Scroll Saw Blades Are Made There Are Three Ways We Manufacture Scroll Saw Blades
    lson has been a leading manufacturer of scroll saw blades for more than 80 years, offering a full Oline of superior quality blades to satisfy almost every scrolling application. Olson blades are for use with scroll/jig saw machines sold by Delta, DeWalt, Dremel, Skil, Rockwell, Pro-Tech, Powermatic, RB Industries, Hegner, Sakura, Shopsmith, Excalibur, Rexon, Ryobi, Sears Craftsman, and Makita. (virtually all domestic and imported scroll saws). They can also be used in hand held fret and jewelers saw frames. The Olson Saw Co. has introduced many innovative blades, including: PGT® (Precision Ground Tooth) Scroll Saw Blades in skip and new double tooth styles with reverse teeth are simply the finest scroll saw blades there are! Considered among experts as “the best blade available”, PGT® blades are made with an exclusive grinding process that forms teeth in hardened steel. The blades are double ground to ensure that every edge of the tooth (face, tip, and gullet) is as sharp as possible. Crown Tooth™ Blades are a recent edition to the line. They have a unique tooth design that cuts on both the up and down stroke. Because of this two-way cutting action, Crown Tooth blades allow for cutting with more control while leaving a smooth, splinter-free finish. Also, they can be turned over for cutting with a fresh set of teeth. They are also excellent for cutting many kinds of plastics. Reverse Skip Tooth Blades with special reverse teeth on the lower end of the blade for a smooth, splinter-free finish on the bottom surface. Olson is continually improving and expanding its blade selection.
    [Show full text]
  • Abrasive Cut Off Saw Tulane University Safety Instructions and Job Hazard Analysis: Abrasive Cut Off Saw
    Maker Space Job Hazard Analysis: Abrasive Cut Off Saw Tulane University Safety Instructions and Job Hazard Analysis: Abrasive Cut Off Saw 1 Maker Space Job Hazard Analysis: Abrasive Cut Off Saw Tulane University Job/Task Step Hazard Hazard Control Method/PPE Inspect Equipment/PPE Check/Buddy System N/A Don all required PPE for use of the Abrasive Cut Off Saw. Approved Safety Glasses with side shields, Long Pants, and Closed Toe Shoes Consider the use of Ear Plugs to reduce noise. All combustible and flammable materials must be a minimum of 10 feet away from this machine while it is being operated. Tuck in shirt, no loose fitting clothing or jewelry. Long hair must be pulled back or tucked into a hat. Work with the supervisor of the space to review operation and ensure all risks have been addressed. Ensure the Saw is placed on a Level Surface/Secure Muscle Strains, Pinch Points If the saw’s placement needs to be the Saw adjusted for leveling purposes, use proper lifting technique or ask for help due to the weight and awkwardness of the saw. Be aware of hand and body placement. Ensure Material being cut is Secure and Level Muscle Strains, Pinch Points, This saw is ONLY for steel. The blade will Abrasions/Lacerations, be ruined if it’s used to cut brass, aluminum, wood or anything that isn’t magnetic. Use proper lifting technique when placing material to be cut on the saw’s platform. Use clamps to secure the material once it’s leveled. Be aware of pinch points while handling material.
    [Show full text]
  • Universities of Leeds, Sheffield and York
    promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Wear. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/43495 Published paper Lewis, R., Tsoraki, C., Broughton, J., Cripps, J.C., Afodun, S.A., Slatter, T., Roubos, V. (2011) Abrasive and impact wear of stone used to manufacture axes in Neolithic Greece, Wear, 271 (9-10), pp. 2549-2560 http://dx.doi.org/10.1016/j.wear.2010.12.074 White Rose Research Online [email protected] ABRASIVE AND IMPACT WEAR OF STONE USED TO MANUFACTURE AXES IN NEOLITHIC GREECE R. Lewis1, C. Tsoraki2, J. Broughton1, J.C. Cripps3, S.A. Afodun3, T. Slatter1, V. Roubos4, 1Department of Mechanical Engineering, University of Sheffield, UK 2Department of Archaeology, University of Sheffield, UK 3Department of Civil and Structural Engineering, University of Sheffield, UK 4Scott Wilson Ltd, Chesterfield, UK *[email protected] ABSTRACT Excavations at the Neolithic settlement at Makriyalos in Northern Greece brought to light a large number of stone axe heads, the majority of which were manufactured from serpentinite and igneous rocks. Detailed study of the manufacturing traces on the archaeological implements identified that both percussive (pecking) and abrasive techniques (sawing and grinding/polishing) were employed for the production of the axes. There is limited evidence, however, of how these processes may have been undertaken. The aim of this work was to build on previous research investigating sawing and polishing methods and the materials that may have been used in these tasks.
    [Show full text]
  • Saws from Festool. We Are Taking Over the Lead
    SAWING Product range Saws from Festool. We are taking over the lead. Perfection is our declared aim. If there will perhaps never be the perfect saw, we have already made history along the way: for example with the guide rail and the splinterguard for circu- lar saws, the triple saw blade guide for pendulum jigsaws or the twin column guide with two bearings for the KAPEX sliding compound mitre saws. We have learnt one thing from this: It is better to set standards than to following existing trends. Our engineers are the driving force behind all innovations. And, of course, our customers. Because only you can show us the way – to tools that are ergo- nomic in shape, lightweight, powerful and operate intuitively. In brief: to a sophisticated and well-thought out system that makes your work decisively easier. We shall remain true to this principle in the future: whether it be through the intensified use of our EC-TEC motor concept and the battery technology in the area of sawing or through further developments that meet our toughest demands. But for all the praise for our products receive here is constantly that little bit of self-criticism. An essential requirement for our aim: the construction of the perfect tool. Contents X Systems get it done 04 X Pendulum jigsaws CARVEX / TRION 06 X TS plunge-cut saws 08 X AXT building materials saw / Compound mitre saw SYMMETRIC 10 X KAPEX sliding compound mitre saws 12 X Bench-mounted trimming saw PRECISIO 14 X CMS Compact Module System 16 X Saw blades 18 X Accessories and consumable materials 20 X Scope of delivery and order numbers 24 2 Tool-less saw blade changes Working with suitable materials is worthwhile.
    [Show full text]
  • Olson's Band and Scroll Saw Blade Catalog
    ® OLSON • ® New! Precision Ground Tooth, hardened OLSON Professional Series Band Saw Blades razor sharp tooth for maximum penetra- tion, hook style tooth provides excellent chip evacuation and uniform tooth set ® to cut faster with precision yielding a superior surface finish. PGT • All Pro PGT, Precision Ground Tooth band saw Precision Ground Tooth, Super Hard Edge blades for the professional user. • Unique carbon-rich steel – optimum balance 1/8″, 3/16″, 1/4″, 3/8″, and 1/2″ blades are packed 1 per 101⁄4″ x 107⁄8″ x 1″ display box. between strength and flexibility Blades 5/8″ and wider are packed 1 per 12″ x 12″ x 2″ corrugated box with label. • Superior hardened and tempered material – stronger, faster cutting blade performance Olson • Computer-controlled raker tooth setting Product No. Width″ Thick″ TPI/Style Applications – straighter, precise cuts with less waste. APG703 1/8 .025 14 Regular Tight scroll cuts to 2″ thick Hook Tooth - for thick wood, plastic, plywood, and composition material with a more aggressive feed. APG708 3/16 .025 10 Regular Mild scroll cuts to 3″ thick Perfect for re-sawing. APG731 1/4 .025 6 Hook General purpose cuts 3–4″ thick Sizes: 1/4″ x .025 x 6 Hook, 3/8″ x .025 x 4 Hook, APG738 3/8 .025 4 Hook Mild contour cuts 4–5″ thick 1/2″ x .025 x 3 Hook, 5/8″ x 025 x 3 Hook, 3/4″ x .032 x 3 Hook, 1″ x .035 x 2 Hook APG726 1/2 .025 3 Hook Resawing wood 6″+ thick Regular Tooth (standard) Usually fine, equally APG771 5/8 .025 3 Hook Resawing for 14″ saws 6″+ thick spaced teeth in narrow bands for wood, plastic and non- APG754 3/4 .032 3 Hook Resawing for 16″+ saws 6″+ thick ferrous metals.
    [Show full text]
  • ABRASIVE Manufacturinga
    11.31 Abrasives Manufacturing 11.31.1 General1 The abrasives industry is composed of approximately 400 companies engaged in the following separate types of manufacturing: abrasive grain manufacturing, bonded abrasive product manufacturing, and coated abrasive product manufacturing. Abrasive grain manufacturers produce materials for use by the other abrasives manufacturers to make abrasive products. Bonded abrasives manufacturing is very diversified and includes the production of grinding stones and wheels, cutoff saws for masonry and metals, and other products. Coated abrasive products manufacturers include those facilities that produce large rolls of abrasive-coated fabric or paper, known as jumbo rolls, and those facilities that manufacture belts and other products from jumbo rolls for end use. The six-digit Source Classification Codes (SCC) for the industry are 3-05-035 for abrasive grain processing, 3-05-036 for bonded abrasives manufacturing, and 3-05-037 for coated abrasives manufacturing. 11.31.2 Process Description1-7 The process description is broken into three distinct segments discussed in the following sections: production of the abrasive grains, production of bonded abrasive products, and production of coated abrasive products. Abrasive Grain Manufacturing - The most commonly used abrasive materials are aluminum oxides and silicon carbide. These synthetic materials account for as much as 80 to 90 percent of the total quantity of abrasive grains produced domestically. Other materials used for abrasive grains are cubic boron nitride (CBN), synthetic diamonds, and several naturally occurring minerals such as garnet and emery. The use of garnet as an abrasive grain is decreasing. Cubic boron nitride is used for machining the hardest steels to precise forms and finishes.
    [Show full text]
  • Sawing Basics V63WCWO3 Operator Variables That Aid Sawing Performance When Making Blade Recommendations, There Are a Few Questions We Need to Answer
    Sawing Basics V63WCWO3 Operator Variables That Aid Sawing Performance When making blade recommendations, there are a few questions we need to answer: • Which blade do we use? • Which tooth pitch do we use? • Which blade speed should we use? • Which feed rate should we use? • What is the relationship between feed & speed? • Why do we need a cutting fluid? • Why do we need blade break‐in? Which blade do we use? Items that influence selection • Machine type—Low cost, low performance machines will not allow a band saw blade to function optimally. • For low performance machines, select blades that can withstand higher shock, chatter, or • The better the feed system on a machine, the higher performance blade that can be used effectively. • Production Rate– The more cuts per hour or the longer the run time the higher the performance blades will be needed. • Cost Per Cut‐To lower the cost per cut, move to a higher performance blade. What Blade Do We Use? Items That Influence Selection Material Machinability‐ Machinability is generally rated from 0 to 100% (SAE1112, rated at 100%, is considered free cutting) • Alloy type (Carbon vs. Nickel‐based, etc.), hardness (Heat‐Treated or aged), and material shape all affect material machinability • The higher the alloy, the lower the machinability rating • The higher the material hardness, the lower the machinability • Complex material shapes will lower the machinability rating due to increase shock Abrasiveness‐ Abrasive material or coatings will reduce the life of a band saw blade‐ consider carbide tipped
    [Show full text]
  • Rotary Drilling Bits and Drill String Tools Putting Your Safety First
    ROTARY DRILLING BITS AND DRILL STRING TOOLS PUTTING YOUR SAFETY FIRST The mining industry continues to demand even higher levels of safety and productivity. In order to meet these requirements, we work continuously to develop even safer products, and to produce comprehensive manuals enabling for safer and effective use of our products. IT’S ALL ABOUT EVERYONE’S HEALTH and hazard management systems. Workers should Helping you to ensure a safe workplace and healthy be provided with safety information, instruction and workforce is of the utmost importance to us. The training on transportation, installation, operational care wellbeing of any person coming into contact with our and disposal of drilling tools. and to produce compre- equipment is paramount. Therefore, we strive to identi- hensive manuals on the safe and effective use of our fy and assess potential risk factors that could threaten products. the health of you and your employees. DRESS RIGHT FROM HEAD TO TOE All of the products in this catalogue are designed (PPE) at all times. This is what we strongly recommend, to meet safety requirements. Those responsible for to help avoid injury: equipment and parts installation must take care to ensure that all necessary steps have been taken to - Safety helmet satisfy performance and safety requirements. This - Hearing protection includes making sure that any applicable laws, regula- - Safety glasses tions, codes and standards are followed. - Protective high visibility clothing - Respiratory protection BE AWARE OF ALL SAFETY PROCEDURES - Safety boots We ask that you start by obeying all instructions given. - Any site-specific PPE as required Never work under an unsupported roof or close to potential “pinch” areas.
    [Show full text]