arXiv:1810.05003v1 [math.NT] 2 Oct 2018 n21,Rmrz[6 endtetekFbnciadtek-Lucas the and numb k-Fibonacci follows: k-Fibonacci the as the for defined identities [16] some numbe Ramirez 2015, obtained k-Fibonacci In [3] of Catarino [8]. properties 2014, gave [7], K¨oseIn [2] [6], and [5], Bolat in 2010, matrices In and sequences , Fibonacci Here, CrepnigAuthor. *Corresponding Aydın F¨ugen Torunbalcı k-Fibonacci Bicomplex nteltrtr 9.I 07 h -ioac sequence k-Fibonacci the 2007, In been have [9]. sequence literature Fibonacci the the in of generalizations of kinds Many Introduction 1. yFlo n lz 4 sfollows as [4] Plaza and Falcon by        Abstract. ubr -ioac utrin iope -ioac qu k-Fibonacci bicomplex ; k-Fibonacci ; Keywords. given. are Catalan’s quaternions identity, Cassini’s t formula, identity, Binet’s Honsberger identity, the k-Fibonacci q Furthermore, and investigated. numbers k-Fibonacci are bicomplex bicomplex with of connected are properties which algebraic some Also, k { sapstv elnme.Rcnl,Flo n lz okdo k- on worked Plaza and Falcon Recently, number. real positive a is D F k,n k,n F k,n } F = n nti ae,bcmlxkFbnciqaenosaedefine are quaternions k-Fibonacci bicomplex paper, this In k, ∈ +1 iope ubr -ioac ubr iope k-Fibona bicomplex number; k-Fibonacci number; Bicomplex { -ioac number k-Fibonacci N 0 F or k,n = = 0 = + { F k F , F i 0 , k,n k,n 1 k, ,k k, , 1 + +1 1 = F + 2 k,n F j 1 + − } 1 , k,n k , n , +2 3 2 + ≥ + 1 F k ,k k, k,n 4 +3 3 + | F dniyfrthese for identity k { k,n 2 F ed’Ocagne’s he 1 + k,n n , aternion. } uaternions ... , n − numbers ∈ quaternions N } th rs. presented sdefined is ers. d. cci (1.1) 2 F¨ugen Torunbalcı Aydın and

Pk,n = Lk,n + iLk,n + j Lk,n + kLk,n Lk,n, n th { +1 +2 +3 | − k-Lucas number } where i, j, k satisfy the multiplication rules

i2 = j2 = k2 = 1 , i j = j i = k, jk = k j = i, ki = i k = j . − − − − In 2015, Polatlı gave Catalans identity for the k-Fibonacci quaternions [13]. In 2016, Polatlı, Kızılate¸sand Kesim [14] defined split k-Fibonacci and split k-Lucas quaternions (Mk,n) and (Nk,n) respectively as follows:

Mk,n = Fk,n + i Fk,n + j Fk,n + k Fk,n Fk,n, n th { +1 +2 +3 | − k-Fibonacci number } where i, j, k are split quaternionic units which satisy the multiplication rules i2 = 1, j2 = k2 = i j k =1 , i j = ji = k, jk = k j = i, ki = i k = j. − − − − − In 1892, bicomplex numbers were introduced by Corrado Segre, for the first time [20]. In 1991, G. Baley Price, the bicomplex numbers gave in his book based on multicomplex spaces and functions [15]. In recent years, fractal structures of this numbers are studied [17], [18], [19], [11]. In 2015, Karaku¸s, Sıddıka Ozkaldı¨ and Aksoyak, Ferdag Kahraman worked on generalized bi- complex numbers and Lie Groups [10]. The set of bicomplex numbers can be expressed by a 1 ,i,j,ij as, { }

C2 = q = q1 + iq2 + jq3 + ijq4 q1, q2, q3, q4 R (1.2) { | ∈ } where i,j and ij satisfy the conditions

i2 = 1, j2 = 1, i j = j i. − −

A set of bicomplex numbers C2 is a real vector space with the addition and scalar multiplication operations. The vector space C2 equipped with bi- complex product is a real associative algebra Table 1. Also, the vector space together with properties of multiplication and product of the bicomplex num- bers is an commutative algebra. Furthermore, three different conjugations can operate on bicomplex numbers [17],[18] as follows:

q = q + i q + j q + i j q = (q + iq )+ j (q + iq ), q C 1 2 3 4 1 2 3 4 ∈ 2 qi∗ = q1 iq2 + jq3 ijq4 = (q1 iq2)+ j (q3 iq4), − − − − (1.3) qj ∗ = q + iq jq ijq = (q + iq ) j (q + iq ), 1 2 − 3 − 4 1 2 − 3 4 qij ∗ = q iq jq + ijq = (q iq ) j (q iq ). 1 − 2 − 3 4 1 − 2 − 3 − 4 Bicomplex k-Fibonacci quaternions 3

The norm of the bicomplex numbers is defined as

2 2 2 2 Nq = q qi = q + q q q +2 j (q q + q q ) , i k × k q| 1 2 − 3 − 4 1 3 2 4 | 2 2 2 2 Nq = q qj = q q + q q +2 i (q q + q q ) , (1.4) j k × k q| 1 − 2 3 − 4 1 2 3 4 | 2 2 2 2 Nq = q qi j = q + q + q + q +2 i j (q q q q ) . i j k × k q| 1 2 3 4 1 4 − 2 3 |

Table 1. Multiplication scheme of bicomplex numbers

x 1 i j ij 1 1 i j ij i i -1 ij -j j j i j -1 -i ij ij -j -i 1

In 2015, the bicomplex Fibonacci and Lucas numbers defined by Nurkan and G¨uven [12] as follows

BF n = Fn + i Fn+1 + j Fn+2 + k Fn+3 (1.5) and BLn = Ln + iLn+1 + jLn+2 + kLn+3 (1.6) where the basis 1, i, j, k satisfy the conditions { } i2 = j2 = 1, k2 =1, i j = ji = k, jk = k j = i, ik = ki = j. − − − In 2018, the bicomplex Fibonacci quaternions defined by Aydın Torunbalcı [1] as follows

QF n = Fn + i Fn+1 + j Fn+2 + i j Fn+3 (1.7) where the basis 1,i, j, ij satisfy the conditions { } i2 = 1, j2 = 1, i j = j i, (i j)2 =1. − − In this paper, the bicomplex k-Fibonacci quaternions and the bicomplex k- Lucas quaternions will be defined respectively, as follows

Fk,n BC = QF =Fk,n + i Fk,n + j Fk,n + i j Fk,n Fk,n, nth { k,n +1 +2 +3 | k-Fibonacci number } and

Lk,n BC = QL =Lk,n + iLk,n + jLk,n + ijLk,n Lk,n, nth { k,n +1 +2 +3 | k-Lucas number } where i2 = 1, j2 = 1, i j = j i, (i j)2 =1. − − 4 F¨ugen Torunbalcı Aydın

The aim of this work is to present in a unified manner a variety of alge- braic properties of the bicomplex k-Fibonacci quaternions as well as both the bicomplex numbers and k-Fibonacci numbers. In particular, using three types of conjugations, all the properties established for bicomplex numbers and bicomplex k-Fibonacci numbers are also given for the bicomplex k- Fibonacci quaternions. In addition, Binet’s Formula, the Honsberger iden- tity, the d’Ocagne’s identity, Cassini’s identity and Catalan’s identity for these quaternions are given.

2. The bicomplex k-Fibonacci numbers The bicomplex k-Fibonacci and k-Lucas numbers can be define by with the basis 1,i, j, ij , where i, j and i j satisfy the conditions { } i2 = 1, j2 = 1, i j = j i, (i j)2 =1. − − as follows

BCFk,n =(Fk,n + i Fk,n+1)+ j (Fk,n+2 + i Fk,n+3) (2.1) =Fk,n + i Fk,n+1 + j Fk,n+2 + i j Fk,n+3 and BCLk,n =(Lk,n + iLk,n+1)+ j (Lk,n+2 + iLk,n+3) (2.2) =Lk,n + iLk,n+1 + jLk,n+2 + ijLk,n+3. The addition and subtraction of two bicomplex k-Fibonacci numbers are defined by

BCF k,n BCF k,m = (Fk,n Fk,m)+ i (Fk,n Fk,m ) ± ± +1 ± +1 +j (Fk,n+2 Fk,m+2)+ i j (Fk,n+3 Fk,m+3) ± ± (2.3) The multiplication of two bicomplex k-Fibonacci numbers is defined by

BCFk,n BCFk,m = (Fk,n Fk,m Fk,n Fk,m × − +1 +1 Fk,n Fk,m Fk,n Fk,m ) − +2 +2 − +3 +3 +i (Fk,n Fk,m+1 + Fk,n+1 Fk,m Fk,n Fk,m Fk,n Fk,m ) − +2 +3 − +3 +2 +j (Fk,n Fk,m+2 + Fk,n+2 Fk,m (2.4) Fk,n Fk,m Fk,n Fk,m ) − +1 +3 − +3 +1 +i j (Fk,n Fk,m+3 + Fk,n+3 Fk,m +Fk,n+1 Fk,m+2 + Fk,n+2 Fk,m+1) = BCFk,m BCFk,n . ×

3. The bicomplex k-Fibonacci quaternions In this section, firstly the bicomplex k-Fibonacci quaternions will be defined. The bicomplex k-Fibonacci quaternions are defined by using the bicomplex Bicomplex k-Fibonacci quaternions 5 numbers and k-Fibonacci numbers as follows

Fk,n BC = QF =Fk,n + i Fk,n + j Fk,n + i j Fk,n Fk,n, n th { k,n +1 +2 +3 | − k-Fib. number } (3.1) where i2 = 1, j2 = 1, i j = j i, (i j)2 =1. − − Let QF k,n and QF k,m be two bicomplex k-Fibonacci quaternions such that QF k,n = Fk,n + i Fk,n+1 + j Fk,n+2 + i j Fk,n+3 (3.2) and QF k,m = Fk,m + i Fk,m+1 + j Fk,m+2 + i j Fk,m+3. (3.3) The addition and subtraction of two bicomplex k-Fibonacci quaternions are defined in the obvious way,

QF QF = (Fk,n + i Fk,n + j Fk,n + i j Fk,n ) k,n ± k,m +1 +2 +3 (Fk,m + i Fk,m + j Fk,m + i j Fk,m ) ± +1 +2 +3 (3.4) = (Fk,n Fk,m)+ i (Fk,n Fk,m ) ± +1 ± +1 +j (Fk,n Fk,m )+ i j (Fk,n Fk,m ). +2 ± +2 +3 ± +3 Multiplication of two bicomplex k-Fibonacci quaternions is defined by

QF QF = (Fk,n + i Fk,n + j Fk,n + i j Fk,n ) k,n × k,m +1 +2 +3 (Fk,m + i Fk,m+1 + j Fk,m+2 + i j Fk,m+3) = [Fk,n Fk,m Fk,n Fk,m − +1 +1 Fk,n Fk,m + Fk,n Fk,m ] − +2 +2 +3 +3 +i [Fk,n Fk,m+1 + Fk,n+1 Fk,m Fk,n Fk,m Fk,n Fk,m ] (3.5) − +2 +3 − +3 +2 +j [Fk,n Fk,m Fk,n Fk,m +2 − +1 +3 +Fk,n Fk,m Fk,n Fk,m ] +2 − +3 +1 +i j [Fk,n Fk,m+3 + Fk,n+1 Fk,m+2 +Fk,n+2 Fk,m+1 + Fk,n+3 Fk,m] = QF QF . k,m × k,n The scaler and the bicomplex vector parts of the bicomplex k-Fibonacci quaternion (QF k,n) are denoted by

S QF k,n = Fk,n and V QF k,n = i Fk,n+1 + j Fk,n+2 + i j Fk,n+3. (3.6)

Thus, the bicomplex k-Fibonacci quaternion QF k,n is given by

QF k,n = S QF k,n + V QF k,n . Three kinds of conjugation can be defined for bicomplex numbers [18]. There- fore, conjugation of the bicomplex k-Fibonacci quaternion is defined in five different ways as follows

1 (QF )∗ =Fk,n i Fk,n+1 + j Fk,n+2 i j Fk,n+3, (3.7) k,n − − 2 (QF )∗ =Fk,n + i Fk,n+1 j Fk,n+2 i j Fk,n+3, (3.8) k,n − − 3 (QF )∗ =Fk,n i Fk,n+1 j Fk,n+2 + i j Fk,n+3, (3.9) k,n − − 6 F¨ugen Torunbalcı Aydın

In the following theorem, some properties related to the conjugations of the bicomplex k-Fibonacci quaternions are given.

1 2 3 Theorem 3.1. Let (QF k,n)∗ , (QF k,n)∗ and (QF k,n)∗ , be three kinds of con- jugation of the bicomplex k-Fibonacci quaternion. In this case, we can give the following relations:

1 QF (QF )∗ = Fk, n Fk, n +2 j Fk, n , (3.10) k,n k,n 2 +1 − 2 +5 2 +3 2 2 2 2 2 QF (QF )∗ = (F F + F F ) k,n k,n k,n − k,n+1 k,n+2 − k,n+3 (3.11) +2 i (2 Fk,n Fk,n+1 + k Fk,2n+3),

3 n+1 QF (QF )∗ = (Fk, n + Fk, n )+2 i j ( 1) k, (3.12) k,n k,n 2 +1 2 +5 − Proof. (3.10): By the Eq.(3.2) and (3.7) we get,

1 2 2 2 2 QF (QF )∗ = (F + F F F ) k,n k,n k,n k,n+1 − k,n+2 − k,n+3 +2 j ( Fk,n Fk,n+2 + Fk,n+1 Fk,n+3) = Fk, n Fk, n +2 j Fk, n . 2 +1 − 2 +5 2 +3 2 2 where Fk,n + Fk,n = Fk,2n+1 and Fk,n Fk,m 1 + Fk,n+1 Fk,m = Fk,n+m are +1 − used [4].

(3.11): By the Eq.(3.2) and (3.8) we get,

2 2 2 2 2 QF (QF )∗ = (F F + F F ) k,n k,n k,n − k,n+1 k,n+2 − k,n+3 +2 i (Fk,n Fk,n+1 + Fk,n+2 Fk,n+3) = (F 2 F 2 + F 2 F 2 ) k,n − k,n+1 k,n+2 − k,n+3 +2 i (2 Fk,n Fk,n+1 + k Fk,2n+3). (3.12): By the Eq.(3.2) and (3.9) we get,

3 2 2 2 2 QF k,n (QF k,n)∗ = (Fk,n + Fk,n+1 + Fk,n+2 + Fk,n+3) +2 i j (Fk,n Fk,n+3 Fk,n+1 Fk,n+2) − n+1 = Fk, n + Fk, n +2 i j ( 1) k. 2 +1 2 +5 − 2 n+1 where Fk,n Fk,n 1 Fk,n+1 = ( 1) and Fk,n Fk,n+3 Fk,n+1 Fk,n+2 = − − − − k ( 1)n+1 are used [4]. − 

Therefore, the norm of the bicomplex k-Fibonacci quaternion QF k,n is defined in three different ways as follows

1 1 2 N QF )∗ = QF (QF )∗ ( k,n k k,n × k,n k = (F 2 + F 2 ) (F 2 + F 2 ) | k,n k,n+1 − k,n+2 k,n+3 (3.13) +2 j ( Fk,n Fk,n + Fk,n Fk,n ) +2 +1 +3 | = Fk, n Fk, n +2 j Fk, n , | 2 +1 − 2 +5 2 +3| 2 2 2 N QF )∗ = QF (QF )∗ ( k,n k k,n × k,n k = (F 2 F 2 ) + (F 2 F 2 ) (3.14) | k,n − k,n+1 k,n+2 − k,n+3 +2 i Fk,n Fk,n + k Fk, n , +1 2 +3 | Bicomplex k-Fibonacci quaternions 7

3 3 2 N QF )∗ = QF (QF )∗ ( k,n k k,n × k,n k = (F 2 + F 2 ) + (F 2 + F 2 ) | k,n k,n+1 k,n+2 k,n+3 (3.15) +2 i j (Fk,n Fk,n+3 Fk,n+1 Fk,n+2) − n+1 | = Fk, n + Fk, n +2 i j ( 1) k . | 2 +1 2 +5 − | In the following theorem, some properties related to the bicomplex k- Fibonacci quaternions are given.

Theorem 3.2. Let QF k,n be the bicomplex k-Fibonacci quaternion. In this case, we can give the following relations:

QF k,n + kQF k,n+1 = QF k,n+2, (3.16)

2 2 2 2 2 (QF ) = (F F F F ) k,n k,n − k,n+1 − k,n+2 − k,n+3 +2 i (Fk,n Fk,n Fk,n Fk,n ) +1 − +2 +3 (3.17) +2 j (Fk,n Fk,n Fk,n Fk,n ) +2 − +1 +3 +2 i j (Fk,n Fk,n+3 + Fk,n+1 Fk,n+2), 2 2 (QF ) + (QF ) = QF + (k Fk, n Fk, n ) k,n k,n+1 k,2n+1 2 +6 − 2 +3 +i (Fk, n 2 Fk, n ) 2 +2 − 2 +6 +j (Fk, n 2 Fk, n )+ i j (3 Fk, n ), 2 +3 − 2 +5 2 +4 (3.18) 2 2 (QF k,n+1) (QF k,n 1) = k [ QF k,2n Fk,2n+2 + k Fk,2n+5 − − − +i (Fk, n 2 Fk, n ) 2 +1 − 2 +5 (3.19) +j ( Fk, n 2 k Fk, n ) − 2 +2 − 2 +3 +i j (3 Fk,2n+3)],

QF iQF + jQF ijQF = Fk,n + Fk,n Fk,n k,n − k,n+1 k,n+2 − k,n+3 +2 − +4 Fk,n+6 +2 jLk,n+3. − (3.20) QF iQF jQF ijQF = Fk,n + Fk,n + Fk,n k,n − k,n+1 − k,n+2 − k,n+3 +2 +4 Fk,n +2 i Fk,n − +6 +5 +2 j Fk,n 2 i j Fk,n +4 − +3 = Lk,n k Fk,n +2 i Fk,n +1 − +5 +5 +2 j Fk,n 2 i j Fk,n . +4 − +3 (3.21) Proof. (3.16): By the Eq.(3.2) we get,

QF k,n + kQF k,n+1 = (Fk,n + k Fk,n+1)+ i (Fk,n+1 + k Fk,n+2) +j (Fk,n+2 + k Fk,n+3)+ i j (Fk,n+3 + k Fk,n+4) = Fk,n+2 + i Fk,n+3 + j Fk,n+4 + i j Fk,n+5 = QF k,n+2. (3.17): By the Eq.(3.2) we get, 2 2 2 2 2 (QF ) = (F F F + F ) k,n k,n − k,n+1 − k,n+2 k,n+3 +2 i (Fk,n Fk,n Fk,n Fk,n ) +1 − +2 +3 +2 j (Fk,n Fk,n Fk,n Fk,n ) +2 − +1 +3 +2 i j (Fk,n Fk,n+3 + Fk,n+1 Fk,n+2). 8 F¨ugen Torunbalcı Aydın

(3.18): By the Eq.(3.2) we get,

2 2 (QF ) + (QF ) = (Fk, n Fk, n Fk, n + Fk, n ) k,n k,n+1 2 +1 − 2 +3 − 2 +5 2 +7 +2 i (Fk, n Fk, n ) 2 +2 − 2 +6 +2 j (Fk, n Fk, n ) 2 +3 − 2 +5 +2 i j (2 Fk,2n+4) = (Fk,2n+1 + i Fk,2n+2 + j Fk,2n+3 + i j Fk,2n+4) Fk, n Fk, n + Fk, n − 2 +3 − 2 +5 2 +7 +i (Fk, n 2 Fk, n )+ j (Fk, n 2 Fk, n ) 2 +2 − 2 +6 2 +3 − 2 +5 +i j (3 Fk,2n+4) = QF + (k Fk, n Fk, n ) k,2n+1 2 +6 − 2 +3 +i (Fk, n 2 Fk, n )+ j (Fk, n 2 Fk, n ) 2 +2 − 2 +6 2 +3 − 2 +5 +i j (3 Fk,2n+4).

(3.19): By the Eq.(3.2) we get,

2 2 2 2 2 2 (QF k,n+1) (QF k,n 1) = [ (Fk,n+1 Fk,n 1) (Fk,n+2 Fk,n) − − − − − − (F 2 F 2 ) + (F 2 F 2 )] − k,n+3 − k,n+1 k,n+4 − k,n+2 +2 i [ (Fk,n+1 Fk,n+2 Fk,n 1 Fk,n) − − (Fk,n Fk,n Fk,n Fk,n )] − +3 +4 − +1 +2 +2 j [ (Fk,n+1 Fk,n+3 Fk,n 1 Fk,n+1) − − (Fk,n Fk,n Fk,n Fk,n )] − +2 +4 − +2 +2 i j [ (Fk,n+1 Fk,n+4 Fk,n 1 Fk,n+2) − − +(Fk,n Fk,n Fk,n Fk,n )] +2 +3 − +1 = k ( Fk,2n k Fk,2n+2 k Fk,2n+4 + k Fk,2n+6) − − 2 +2 i (k Fk, n k Fk, n )+2 j ( k Fk, n ) 2 +1 − 2 +5 − 2 +3 +2 i j (2 k Fk,2n+3) = k [ QF Fk, n + k Fk, n k,2n − 2 +2 2 +5 +i (Fk, n 2 Fk, n ) 2 +1 − 2 +5 +j ( Fk, n 2 k Fk, n ) − 2 +2 − 2 +3 +i j (3 Fk,2n+3)].

(3.20): By the Eq.(3.2) we get,

QF iQF jQF ijQF = (Fk,n + Fk,n k Fk,n ) k,n − k,n+1 − k,n+2 − k,n+3 +2 − +5 +2 i Fk,n+5 +2 j Fk,n+4 2 i j Fk,n − +3 = Lk,n k Fk,n +2 i Fk,n +1 − +5 +5 +2 j Fk,n 2 i j 2 j Fk,n . +4 − +3 (3.21): By the Eq.(3.2) we get,

QF iQF + jQF ijQF = (Fk,n + Fk,n Fk,n k,n − k,n+1 k,n+2 − k,n+3 +2 − +4 Fk,n )+2 j (Fk,n + Fk,n ) − +6 +2 +4 = Lk,n (Fk,n + Fk,n ) +1 − +4 +6 +2 jLk,n+3.  Bicomplex k-Fibonacci quaternions 9

Theorem 3.3. Let QF k,n = (Fk,n, Fk,n+1, Fk,n+2, Fk,n+3) and QLk,n = (Lk,n,Lk,n+1,Lk,n+2,Lk,n+3) be the bicomplex k-Fibonacci quater- nion and the bicomplex k-Lucas quaternion respectively. The following rela- tions are satisfied

QF k,n+1 + QF k,n 1 = Lk,n + iLk,n+1 + jLk,n+2 + ijLk,n+3 = QLk,n, − (3.22)

QF k,n+2 QF k,n 2 = Lk,n + iLk,n+1 + jLk,n+2 + ijLk,n+3 = kQLk,n. − − (3.23)

Proof.

QF k,n+1 + QF k,n 1 = (Fk,n+1 + Fk,n 1)+ i (Fk,n+2 + Fk,n) − − +j (Fk,n+3 + Fk,n+1) +i j (Fk,n+4 + Fk,n+2) = (Lk,n + iLk,n+1 + jLk,n+2 + ijLk,n+3) = QLk,n. and

QF k,n+2 QF k,n 2 = (Fk,n+2 Fk,n 2)+ i (Fk,n+3 Fk,n 1) − − − − − − +j (Fk,n Fk,n)+ i j (Fk,n Fk,n ) +4 − +5 − +1 = k (Lk,n + iLk,n+1 + jLk,n+2 + ijLk,n+3) = kQLk,n.



Theorem 3.4. For n,m 0 the Honsberger identity for the bicomplex k- ≥ Fibonacci quaternions QF k,n and QF k,m is given by

QF QF + QF QF = QF Fk,n m + k Fk,n m k,n k,m k,n+1 k,m+1 k,n+m+1 − + +3 + +6 +i (Fk,n m 2 Fk,n m ) + +2 − + +6 +j (Fk,n m 2 Fk,n m ) + +3 − + +5 +i j (3 Fk,n+m+4). (3.24) 10 F¨ugen Torunbalcı Aydın

Proof. (3.24): By the Eq.(3.2) we get,

QF k,n QF k,m + QF k,n+1 QF k,m+1 = [ (Fk,nFk,m + Fk,n+1Fk,m+1) (Fk,n Fk,m + Fk,n Fk,m ) − +1 +1 +2 +2 (Fk,n Fk,m + Fk,n Fk,m ) − +2 +2 +3 +3 +(Fk,n+3Fk,m+3 + Fk,n+4Fk,m+4)] +i [ (Fk,nFk,m+1 + Fk,n+1Fk,m+2) +(Fk,n+1Fk,m + Fk,n+2Fk,m+1) (Fk,n Fk,m + Fk,n Fk,m ) − +2 +3 +3 +4 (Fk,n Fk,m + Fk,n Fk,m )] − +3 +2 +4 +3 +j [ (Fk,nFk,m+2 + Fk,n+1Fk,m+3) +(Fk,n+2Fk,m + Fk,n+3Fk,m+1) (Fk,n Fk,m + Fk,n Fk,m ) − +1 +3 +2 +4 (Fk,n Fk,m + Fk,n Fk,m )] − +3 +1 +4 +2 +i j [ (Fk,nFk,m+3 + Fk,n+1Fk,m+4) +(Fk,n+1Fk,m+2 + Fk,n+2Fk,m+3) +(Fk,n+2Fk,m+1 + Fk,n+3Fk,m+2) +(Fk,n+3Fk,m + Fk,n+4Fk,m+1)] = (Fk,n m Fk,n m Fk,n m + +1 − + +3 − + +5 +Fk,n m )+2 i (Fk,n m Fk,n m ) + +7 + +2 − + +6 +2 j (Fk,n m Fk,n m ) + +3 − + +5 +i j (4 Fk,n+m+4) = (Fk,n+m+1 + i Fk,n+m+2 + j Fk,n+m+3 + i j Fk,n m ) Fk,n m + k Fk,n m + +4 − + +3 + +6 +i (Fk,n m 2 Fk,n m ) + +2 − + +6 +j (Fk,n m 2 Fk,n m ) + +3 − + +5 +i j (3 Fk,n+m+4) = QF Fk,n m + k Fk,n m k,n+m+1 − + +3 + +6 +i (Fk,n m 2 Fk,n m ) + +2 − + +6 +j (Fk,n m 2 Fk,n m ) + +3 − + +3 +i j (3 Fk,n+m+4).

where the identity Fk,nFk,m + Fk,n+1Fk,m+1 = Fk,n+m+1 was used [4]. 

Theorem 3.5. For n,m 0 the D’Ocagne’s identity for the bicomplex k- ≥ Fibonacci quaternions QF k,n and QF k,m is given by

m 2 3 QF k,n QF k,m+1 QF k,n+1 QF k,m = ( 1) Fk,n m [ 2 (k + 2) j + (k +2 k) i j ]. − − − (3.25) Bicomplex k-Fibonacci quaternions 11

Proof. (3.25): By the Eq.(3.2) we get,

QF QF QF QF = [ (Fk,nFk,m Fk,n Fk,m) k,n k,m+1 − k,n+1 k,m +1 − +1 (Fk,n Fk,m Fk,n Fk,m ) − +1 +2 − +2 +1 (Fk,n Fk,m Fk,n Fk,m ) − +2 +3 − +3 +2 +(Fk,n Fk,m Fk,n Fk,m )] +3 +4 − +4 +3 + i [ (Fk,nFk,m Fk,n Fk,m ) +2 − +1 +1 +(Fk,n Fk,m Fk,n Fk,m) +1 +1 − +2 (Fk,n Fk,m Fk,n Fk,m )] − +3 +3 − +4 +2 + j [ (Fk,nFk,m Fk,n Fk,m ) +3 − +1 +2 +(Fk,n Fk,m Fk,n Fk,m) +2 +1 − +3 (Fk,n Fk,m Fk,n Fk,m ) − +1 +4 − +2 +3 (Fk,n Fk,m Fk,n Fk,m )] − +3 +2 − +4 +1 + i j [ (Fk,nFk,m Fk,n Fk,m ) +4 − +1 +3 +(Fk,n Fk,m Fk,n Fk,m ) +1 +3 − +2 +2 +(Fk,n Fk,m Fk,n Fk,m ) +2 +2 − +3 +1 +(Fk,n+3Fk,m+1Fk,n+4Fk,m)] m 2 = ( 1) Fk,n m [ 2 (k + 2) j −+(k3 +2−k) i j ].

n where the identity Fk,mFk,n+1 Fk,m+1Fk,n = ( 1) Fk,m n is used [5].  − − −

Theorem 3.6. Let QF k,n be the bicomplex k-Fibonacci quaternion.Then, we have the following identities

n 1 QF = ( QF + QF QF QF ), (3.26) X k,s k k,n+1 k,n − k,1 − k,0 s=1

n 1 QF k,2s 1 = (QF k,2n QF k,0), (3.27) X − k − s=1

n 1 QF = (QF QF ). (3.28) X 2s k k,2n+1 − k,1 s=1 12 F¨ugen Torunbalcı Aydın

n 1 Proof. (3.26) Since Fk,i = (Fk,n+1 + Fk,n 1) [4], we get Pi=1 k − n n n n n Q = F + i F + ε F + i j F X F k,s X k,s X k,s+1 X k,s+2 X k,s+3 s=1 s=1 s=1 s=1 s=1 1 = (Fk,n + Fk,n 1)+ i (Fk,n + Fk,n k 1) k { +1 − +2 +1 − − 2 + j [ Fk,n + Fk,n (k + 1) k ] +3 +2 − − 3 2 + i j [ Fk,n + Fk,n (k +2 k) (k + 1) ] +4 +3 − − } 1 = (Fk,n + i Fk,n + j Fk,n + i j Fk,n ) k { +1 +2 +3 +4 + (Fk,n + i Fk,n+1 + j Fk,n+2 + i j Fk,n+3) [1+(k + 1) i + (k2 + k + 1) j + (k3 + k2 +2 k + 1) ] − } 1 = ( QF + QF QF QF ). k k,n+1 k,n − k,1 − k,0 n n 1 1 (3.27): Using Fk,2i+1 = k Fk,2n+2 and Fk,2i = k (Fk,2n+1 1) [4], iP=1 iP=1 − we get n 1 QF k,2s 1 = k (Fk,2n)+ i (Fk,2n+1 1)+ j (Fk,2n+2 k) sP=1 − { − − 2 +i j (Fk,2n+3 (k +1)) 1 − } = k [ Fk,2n + i Fk,2n+1 + j Fk,2n+2 + i j Fk,2n+3] {(0+ i + k j + 2 (k2 + 1) i j ) −1 } = k QF k,2n [Fk,0 + i Fk,1 + j Fk,2 + i j Fk,3] 1 { − } = ( QF QF ) . k k,2n − k,0 n 1 (3.28): Using Fk,2i = k (F2n+1 1) [4], we obtain iP=1 − n 1 2 QF k,2s = k (Fk,2n+1 1)+ i (Fk,2n+2 k)+ j (Fk,2n+3 (k + 1)) sP=1 { − − − 2 +i j (Fk,2n+4 (k +2 k)) 1 − } = k (Fk,2n+1 + i Fk,2n+2 + j Fk,2n+3 + i j Fk,2n+4) { (1 + ki + (k2 + 1) j + (k3 +2 k) i j ) 1 − } = k QF k,2n+1 (Fk,1 + i Fk,2 + j Fk,3 + i j Fk,4) 1 { − } = ( QF QF ) . k k,2n+1 − k,1 

Theorem 3.7. Binet’s Formula Let QF k,n be the bicomplex k-Fibonacci quaternion. For n 1, Binet’s for- mula for these quaternions is as follows: ≥

1 n n QF = αˆ α βˆ β (3.29) k,n α β  −  − where 2 3 k+√k2 +4 αˆ =1+ i α + j α + i j α , α = 2 , Bicomplex k-Fibonacci quaternions 13

ˆ 2 3 k √k2+4 β =1+ iβ + jβ + ijβ , β = − 2 , α + β = k , α β = √k2 +4 , αβ = 1. − −

Proof. By using the Binet formula for k-Fibonacci number [5], we obtain

QF k,n = Fk,n + i Fk,n+1 + j Fk,n+2 + i j Fk,n+3

αn βn αn+1 βn+1 αn+2 βn+2 αn+3 βn+3 = − + i ( − )+ j ( − )+ i j ( − ) √k2+4 √k2+4 √k2+4 √k2+4

αn (1+i α+j α2+i j α3) βn (1+iβ+jβ2+ijβ3) = − √k2+4

= 1 (ˆα αn ββˆ n). √k2+4 − whereα ˆ = 1+ i α + j α2 + i j α3, βˆ = 1+ iβ + jβ2 + ijβ3. 

Theorem 3.8. Cassini’s Identity Let QF be the bicomplex k-Fibonacci quaternion. For n 1, Cassini’s k,n ≥ identity for QF k,n is as follows:

2 n 2 3 QF k,n 1 QF k,n+1 (QF k,n) = ( 1) [ 2(k + 2) j + (k +2 k) i j ]. (3.30) − − − Proof. (3.30): By using (3.2) we get

2 2 QF k,n 1 QF k,n+1 ( QF k,n) = [ (Fk,n 1Fk,n+1 Fk,n) − − − − 2 (Fk,nFk,n+2 Fk,n+1) − − 2 (Fk,n+1Fk,n+3 Fk,n+2) − − 2 +(Fk,n Fk,n F )] +2 +4 − k,n+3 +i [ (Fk,n 1Fk,n+2 Fk,nFk,n+1) − − (Fk,n Fk,n Fk,n Fk,n )] − +1 +4 − +2 +3 +j [ (Fk,n 1Fk,n+3 Fk,nFk,n+2) − − (Fk,nFk,n Fk,n Fk,n ) − +4 − +1 +3 +(Fk,n Fk,n Fk,n Fk,n) +1 +1 − +2 (Fk,n Fk,n Fk,n Fk,n )] − +2 +2 − +3 +1 +i j (Fk,n 1Fk,n+4 Fk,nFk,n+3) n − 2− 3 = ( 1) Fk,n m[ 2(k + 2) j + (k +2 k) i j ]. − − 2 n where the identities of the k-Fibonacci numbers Fk,n 1Fk,n+1 Fk,n = ( 1) − − − [5]. Furthermore;

n Fk,n 1Fk,n+2 Fk,nFk,n+1 = k ( 1)  − − 2− n Fk,n 1Fk,n+3 Fk,nFk,n+2 = (k +1)( 1) ,  − − 2 − n  Fk,n+1Fk,n+3 Fk,nFk,n+4 = (k +1)( 1) , − 3 − n  Fk,n 1Fk,n+4 Fk,nFk,n+3 = (k +2 k) ( 1)  − − − are used.  14 F¨ugen Torunbalcı Aydın

Theorem 3.9. Catalan’s Identity Let QF be the bicomplex k-Fibonacci quaternion. For n 1, Catalan’s k,n+r ≥ identity for QF k,n+r is as follows: 2 n+r 2 3 QF k,n+r 1 QF k,n+r+1 (QF k,n+r) = ( 1) [ 2(k + 2) j + (k +2 k) i j ]. − − − (3.31) Proof. (3.31): By using (3.2) we get 2 2 QF k,n+r 1 QF k,n+r+1 (QF k,n+r) = (Fk,n+r 1Fk,n+r+1 Fk,n+r) − − − − 2 (Fk,n+rFk,n+r+2 Fk,n+r+1) − − 2 (Fk,n+r+1Fk,n+r+3 Fk,n+r+2) − 2 +(Fk,n r Fk,n r F ) + +2 + +4 − k,n+r+3 +i [ (Fk,n+r 1Fk,n+r+2) (Fk,n+rFk,n+r+1) − − (Fk,n r Fk,n r Fk,n r Fk,n r ) − + +1 + +4 − + +2 + +3 +j [ (Fk,n+r 1Fk,n+r+3 Fk,n+rFk,n+r+2) − − (Fk,n rFk,n r Fk,n r Fk,n r ) − + + +4 − + +1 + +3 +(Fk,n r Fk,n r Fk,n r Fk,n r) + +1 + +1 − + +2 + (Fk,n r Fk,n r Fk,n r Fk,n r )] − + +2 + +2 − + +3 + +1 +i j [ (Fk,n+r 1Fk,n+r+4 Fk,n+rFk,n+r+3) − − +(Fk,n rFk,n r Fk,n r Fk,n r ) + + +3 − + +1 + +2 +(Fk,n+r+2Fk,n+r+1 Fk,n+r+3Fk,n+r)] = ( 1)n+r [ 2 (k2 + 2) j −+ (k3 +2 k) i j ] − 2 where the identity of the k-Fibonacci numbers Fk,n+r 1Fk,n+r+1 Fk,n+r = − − ( 1)n+r is used [5]. Furthermore; − n+r Fk,n+r 1 Fk,n+r+2 + Fk,n+r Fk,n+r+1 = ( 1) k,  − − n+r 2 Fk,n+r 1 Fk,n+r+3 Fk,n+r Fk,n+r+2 = ( 1) (k + 1),  − − − n+r 2  Fk,n+r+1 Fk,n+r+3 Fk,n+r Fk,n+r+4 = ( 1) (k + 1),  − − n+r 3  Fk,n+r 1 Fk,n+r+4 Fk,n+r Fk,n+r+3 = ( 1) (k +2 k), − − − n+r+1  Fk,n+r Fk,n+r+3 Fk,n+r+1 Fk,n+r+2 = ( 1) k,  − − n+r  Fk,n+r+2 Fk,n+r+1 Fk,n+r+3 Fk,n+r = ( 1) k .  − − are used. 

4. Conclusion In this paper, a number of new results on bicomplex k-Fibonacci quaternions were derived. This study fills the gap in the literature by providing the bi- complex k-Fibonacci quaternion using definitions of the bicomplex number [18], k-Fibonacci quaternion [16] and the bicomplex Fibonacci quaternion [1].

References [1] Aydın, Torunbalcı F.: Bicomplex Fibonacci quaternions, Chaos Solitons Frac- tals, Vol. 106, 147-153 (2018) [2] Bolat C., K¨ose H., On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences 5(22), 1097-1105 (2010) Bicomplex k-Fibonacci quaternions 15

[3] Catarino, P.: On some identities for k-Fibonacci sequence., Int. J. Contemp. Math. Sciences 9(1), 37-42 (2014) [4] Falcon S., Plaza A.: On the Fibonacci k-numbers, Chaos Solitons Fractals, Vol. 32(5), 1615-1624 (2007) [5] Falcon S., Plaza A.: The k-Fibonacci sequence and the pascal 2-triangle, Chaos Solitons Fractals, Vol. 33(1), 38-49 (2007) [6] Falcon S., Plaza A.: On k-Fibonacci sequences and and their deriva- tives, Chaos Solitons Fractals, Vol. 39(3), 1005-1019 (2009) [7] Falcon S.: On the k-Lucas numbers, International Journal of Contemporary Mathematical Sciences, Vol. 6(21), 1039-1050 (2011) [8] Falcon S.: On the complex k-Fibonacci numbers, Cogent Mathematics, Vol. 3(1), 1201944 (2016) [9] Horadam A. F.: A generalized Fibonacci sequence., The American Math. Monthly, Vol. 68(5), 455-459 (1961) [10] Karaku¸sS. O.,¨ Aksoyak F. K.: Generalized bicomplex numbers and Lie groups, Adv. in Appl.Clifford Algebras, Vol. 25(4), 943-963 (2015) [11] Luna-Elizarraras M., Shapiro M., Struppa D. C., Vajiac A.: Bicomplex numbers and their elemantary functions, Cubo (Temuco), Vol. 14(2), 61-80 (2012) [12] Nurkan S. K., G¨uven I.˙ A.: A Note on bicomplex Fibonacci and Lucas numbers, arXiv preprint arXiv:1508.03972 [13] Polatlı E., Kesim S.: A Note on catalans identity for the k-Fibonacci quater- nions, Journal of Sequences Vol. 18(2), 3 (2015) [14] Polatlı E., Kızılate¸sC., Kesim S.: On split k-Fibonacci and k-Lucas quaternions, Adv. in Appl. Clifford Algebras, Vol. 26(1), 353-362 (2016) [15] Price G. B.: An introduction to multicomplex spaces and functions M. Dekker (1991) [16] Ramirez, J. L.: Some combinatorial properties of the k-Fibonacci and the k- Lucas quaternions, Analele Universitatii Ovidius Constanta-Seria Matematica, Vol. 23(2), 201-212 (2015) [17] Rochon D.: A generalized mandelbrot set for bicomplex numbers, Fractals, Vol.8(04), 355-368 (2000) [18] Rochon D., Shapiro M.: On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oredea, fasc. math, Vol.11(71), 110 (2004) [19] Rochon D., Tremblay S.: Bicomplex quantum mechanics: Ii. the hilbert space, Adv. in Appl. Clifford Algebras, Vol. 16(2), 135-157 (2006) [20] Segre C.: Le rappresentazioni reali delle forme complesse e gli ente iper- algebrici, Mathematische Annalen, Vol. 40(3), 413-467 (1892)

F¨ugen Torunbalcı Aydın Yildiz Technical University Faculty of Chemical and Metallurgical Engineering Department of Mathematical Engineering Davutpasa Campus, 34220 Esenler, Istanbul, TURKEY e-mail: [email protected] ; [email protected]