Introduction to Data Compression • What Is Data Compression?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acoustica-Mp3-Audio-Mixer-Manual.Pdf
Acoustica Registration Overview Quick Start Version History Using MP3 Audio Mixer Working with Sounds Working with Sound Groups Main Window Exporting to MP3, WMA, WAV, or Realaudio™ Preferences Troubleshooting Menu Reference File Edit Sound Group Sound Menu Toolbar Copyright and Ownership Notices MP3 Audio Mixer © Copyright 1998-2002 Acoustica. All Rights Reserved. Includes Xaudio software Copyright © 1996-2002 Xaudio Corporation. All Rights Reserved. RealAudio® encoding components © 1996-2002 by Real Networks, Inc. Windows Media Format © 2000-2002 Microsoft Corporation. All rights reserved. Quick Start So you want to get started in a hurry? Follow "SoundWarrior" through the steps to MP3 Audio Mixer mastery! 1. Start MP3 Audio Mixer SoundWarrior double clicks the MP3 Audio Mixer icon on his desktop. Okay, we could have left this step out. J 2. Drag in some sounds. SoundWarrior has a good sound of a cave-woman scream called arghhh1.wav. The sound is located in "c:\cavescreams\", which he finds, and then drags the sound’s icon onto the MP3 Audio Mixer window. See working with sounds. 3. Drag in some more sounds. SoundWarrior also drags in stampede.wav, the sound of a herd of Mastodons stampeding by his cave. Finally, he drags in an MP3 called "rockrolls.mp3", some of the latest music from "The Stoners" 4. Make a recording if you want. SoundWarrior hits the record button and the record dialog comes up. He punches the record button on the dialog and screams into his microphone "You make fire now! I make fire yesterday!" He then hits the stop button, previews the sound and saves it as "me_talk1.wav". -
Realaudio and Realvideo Content Creation Guide
RealAudioâ and RealVideoâ Content Creation Guide Version 5.0 RealNetworks, Inc. Contents Contents Introduction......................................................................................................................... 1 Streaming and Real-Time Delivery................................................................................... 1 Performance Range .......................................................................................................... 1 Content Sources ............................................................................................................... 2 Web Page Creation and Publishing................................................................................... 2 Basic Steps to Adding Streaming Media to Your Web Site ............................................... 3 Using this Guide .............................................................................................................. 4 Overview ............................................................................................................................. 6 RealAudio and RealVideo Clips ....................................................................................... 6 Components of RealSystem 5.0 ........................................................................................ 6 RealAudio and RealVideo Files and Metafiles .................................................................. 8 Delivering a RealAudio or RealVideo Clip ...................................................................... -
A Practical Approach to Spatiotemporal Data Compression
A Practical Approach to Spatiotemporal Data Compres- sion Niall H. Robinson1, Rachel Prudden1 & Alberto Arribas1 1Informatics Lab, Met Office, Exeter, UK. Datasets representing the world around us are becoming ever more unwieldy as data vol- umes grow. This is largely due to increased measurement and modelling resolution, but the problem is often exacerbated when data are stored at spuriously high precisions. In an effort to facilitate analysis of these datasets, computationally intensive calculations are increasingly being performed on specialised remote servers before the reduced data are transferred to the consumer. Due to bandwidth limitations, this often means data are displayed as simple 2D data visualisations, such as scatter plots or images. We present here a novel way to efficiently encode and transmit 4D data fields on-demand so that they can be locally visualised and interrogated. This nascent “4D video” format allows us to more flexibly move the bound- ary between data server and consumer client. However, it has applications beyond purely scientific visualisation, in the transmission of data to virtual and augmented reality. arXiv:1604.03688v2 [cs.MM] 27 Apr 2016 With the rise of high resolution environmental measurements and simulation, extremely large scientific datasets are becoming increasingly ubiquitous. The scientific community is in the pro- cess of learning how to efficiently make use of these unwieldy datasets. Increasingly, people are interacting with this data via relatively thin clients, with data analysis and storage being managed by a remote server. The web browser is emerging as a useful interface which allows intensive 1 operations to be performed on a remote bespoke analysis server, but with the resultant information visualised and interrogated locally on the client1, 2. -
(A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
Ogg Audio Codec Download
Ogg audio codec download click here to download To obtain the source code, please see the xiph download page. To get set up to listen to Ogg Vorbis music, begin by selecting your operating system above. Check out the latest royalty-free audio codec from Xiph. To obtain the source code, please see the xiph download page. Ogg Vorbis is Vorbis is everywhere! Download music Music sites Donate today. Get Set Up To Listen: Windows. Playback: These DirectShow filters will let you play your Ogg Vorbis files in Windows Media Player, and other OggDropXPd: A graphical encoder for Vorbis. Download Ogg Vorbis Ogg Vorbis is a lossy audio codec which allows you to create and play Ogg Vorbis files using the command-line. The following end-user download links are provided for convenience: The www.doorway.ru DirectShow filters support playing of files encoded with Vorbis, Speex, Ogg Codecs for Windows, version , ; project page - for other. Vorbis Banner Xiph Banner. In our effort to bring Ogg: Media container. This is our native format and the recommended container for all Xiph codecs. Easy, fast, no torrents, no waiting, no surveys, % free, working www.doorway.ru Free Download Ogg Vorbis ACM Codec - A new audio compression codec. Ogg Codecs is a set of encoders and deocoders for Ogg Vorbis, Speex, Theora and FLAC. Once installed you will be able to play Vorbis. Ogg Vorbis MSACM Codec was added to www.doorway.ru by Bjarne (). Type: Freeware. Updated: Audiotags: , 0x Used to play digital music, such as MP3, VQF, AAC, and other digital audio formats. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOSSLESS COMPRESSION of SATELLITE TELEMETRY DATA for a NARROW-BAND DOWNLINK a Graduate P
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOSSLESS COMPRESSION OF SATELLITE TELEMETRY DATA FOR A NARROW-BAND DOWNLINK A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical Engineering By Gor Beglaryan May 2014 Copyright Copyright (c) 2014, Gor Beglaryan Permission to use, copy, modify, and/or distribute the software developed for this project for any purpose with or without fee is hereby granted. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Copyright by Gor Beglaryan ii Signature Page The graduate project of Gor Beglaryan is approved: __________________________________________ __________________ Prof. James A Flynn Date __________________________________________ __________________ Dr. Deborah K Van Alphen Date __________________________________________ __________________ Dr. Sharlene Katz, Chair Date California State University, Northridge iii Contents Copyright .......................................................................................................................................... ii Signature Page ............................................................................................................................... -
Multimedia Compression Techniques for Streaming
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-12, October 2019 Multimedia Compression Techniques for Streaming Preethal Rao, Krishna Prakasha K, Vasundhara Acharya most of the audio codes like MP3, AAC etc., are lossy as Abstract: With the growing popularity of streaming content, audio files are originally small in size and thus need not have streaming platforms have emerged that offer content in more compression. In lossless technique, the file size will be resolutions of 4k, 2k, HD etc. Some regions of the world face a reduced to the maximum possibility and thus quality might be terrible network reception. Delivering content and a pleasant compromised more when compared to lossless technique. viewing experience to the users of such locations becomes a The popular codecs like MPEG-2, H.264, H.265 etc., make challenge. audio/video streaming at available network speeds is just not feasible for people at those locations. The only way is to use of this. FLAC, ALAC are some audio codecs which use reduce the data footprint of the concerned audio/video without lossy technique for compression of large audio files. The goal compromising the quality. For this purpose, there exists of this paper is to identify existing techniques in audio-video algorithms and techniques that attempt to realize the same. compression for transmission and carry out a comparative Fortunately, the field of compression is an active one when it analysis of the techniques based on certain parameters. The comes to content delivering. With a lot of algorithms in the play, side outcome would be a program that would stream the which one actually delivers content while putting less strain on the audio/video file of our choice while the main outcome is users' network bandwidth? This paper carries out an extensive finding out the compression technique that performs the best analysis of present popular algorithms to come to the conclusion of the best algorithm for streaming data. -
Modification of Adaptive Huffman Coding for Use in Encoding Large Alphabets
ITM Web of Conferences 15, 01004 (2017) DOI: 10.1051/itmconf/20171501004 CMES’17 Modification of Adaptive Huffman Coding for use in encoding large alphabets Mikhail Tokovarov1,* 1Lublin University of Technology, Electrical Engineering and Computer Science Faculty, Institute of Computer Science, Nadbystrzycka 36B, 20-618 Lublin, Poland Abstract. The paper presents the modification of Adaptive Huffman Coding method – lossless data compression technique used in data transmission. The modification was related to the process of adding a new character to the coding tree, namely, the author proposes to introduce two special nodes instead of single NYT (not yet transmitted) node as in the classic method. One of the nodes is responsible for indicating the place in the tree a new node is attached to. The other node is used for sending the signal indicating the appearance of a character which is not presented in the tree. The modified method was compared with existing methods of coding in terms of overall data compression ratio and performance. The proposed method may be used for large alphabets i.e. for encoding the whole words instead of separate characters, when new elements are added to the tree comparatively frequently. Huffman coding is frequently chosen for implementing open source projects [3]. The present paper contains the 1 Introduction description of the modification that may help to improve Efficiency and speed – the two issues that the current the algorithm of adaptive Huffman coding in terms of world of technology is centred at. Information data savings. technology (IT) is no exception in this matter. Such an area of IT as social media has become extremely popular 2 Study of related works and widely used, so that high transmission speed has gained a great importance. -
Greedy Algorithm Implementation in Huffman Coding Theory
iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE) ISSN-2347-4890 Volume 8 Issue 9 September 2020 Greedy Algorithm Implementation in Huffman Coding Theory Author: Sunmin Lee Affiliation: Seoul International School E-mail: [email protected] <DOI:10.26821/IJSHRE.8.9.2020.8905 > ABSTRACT In the late 1900s and early 2000s, creating the code All aspects of modern society depend heavily on data itself was a major challenge. However, now that the collection and transmission. As society grows more basic platform has been established, efficiency that can dependent on data, the ability to store and transmit it be achieved through data compression has become the efficiently has become more important than ever most valuable quality current technology deeply before. The Huffman coding theory has been one of desires to attain. Data compression, which is used to the best coding methods for data compression without efficiently store, transmit and process big data such as loss of information. It relies heavily on a technique satellite imagery, medical data, wireless telephony and called a greedy algorithm, a process that “greedily” database design, is a method of encoding any tries to find an optimal solution global solution by information (image, text, video etc.) into a format that solving for each optimal local choice for each step of a consumes fewer bits than the original data. [8] Data problem. Although there is a disadvantage that it fails compression can be of either of the two types i.e. lossy to consider the problem as a whole, it is definitely or lossless compressions. -
A Survey on Different Compression Techniques Algorithm for Data Compression Ihardik Jani, Iijeegar Trivedi IC
International Journal of Advanced Research in ISSN : 2347 - 8446 (Online) Computer Science & Technology (IJARCST 2014) Vol. 2, Issue 3 (July - Sept. 2014) ISSN : 2347 - 9817 (Print) A Survey on Different Compression Techniques Algorithm for Data Compression IHardik Jani, IIJeegar Trivedi IC. U. Shah University, India IIS. P. University, India Abstract Compression is useful because it helps us to reduce the resources usage, such as data storage space or transmission capacity. Data Compression is the technique of representing information in a compacted form. The actual aim of data compression is to be reduced redundancy in stored or communicated data, as well as increasing effectively data density. The data compression has important tool for the areas of file storage and distributed systems. To desirable Storage space on disks is expensively so a file which occupies less disk space is “cheapest” than an uncompressed files. The main purpose of data compression is asymptotically optimum data storage for all resources. The field data compression algorithm can be divided into different ways: lossless data compression and optimum lossy data compression as well as storage areas. Basically there are so many Compression methods available, which have a long list. In this paper, reviews of different basic lossless data and lossy compression algorithms are considered. On the basis of these techniques researcher have tried to purpose a bit reduction algorithm used for compression of data which is based on number theory system and file differential technique. The statistical coding techniques the algorithms such as Shannon-Fano Coding, Huffman coding, Adaptive Huffman coding, Run Length Encoding and Arithmetic coding are considered. -
Audio and Video Standards for Online Learning Kevin Reeve, Utah State University
... from the Dr. C Library Audio and Video Standards for Online Learning Kevin Reeve, Utah State University Introduction Digital media is a powerful tool that can enhance your online course. Recent devel- opments and market trends have changed the rules and media formats that need to be considered when creating media for your course. Choosing the correct video and audio format is the first step to insuring a successful experience for both instructor and student. Podcasts, a form of digital media meant for downloading to a portable media device are included in this discussion. Video and Audio Formats Popular media formats for audio and video include RealAudio® and RealVideo®, Win- dows Media®, MPEG 3, and MPEG 4. Each requires software that will encode video/ audio to that format, and also a player that will decode the video/audio for playback. All these formats are currently being used in e-learning with great success. The latest market trends are now suggesting that MPEG 4 for video and audio and MPEG 3 for audio only are “the” standards for digital media. Why MPEG 4 and MPEG 3? MPEG 4 and MPEG 3 are the standard because of consumer response. Apple ad- opted MPEG 4 early on as the video format for playback on their iPod®s that support video. Apple and YouTube worked together to allow YouTube video to be accessed by an Apple TV®, iPhones®, and the iPod® Touch. YouTube moved from Flash Video to MPEG 4 to accommodate these devices, and Adobe soon followed by updating its Flash Player to play MPEG 4 video and audio. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter Prediction using Binary classification techniques A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering by Alex Kit Romero May 2020 The graduate project of Alex Kit Romero is approved: ____________________________________ ____________ Dr. Katya Mkrtchyan Date ____________________________________ ____________ Dr. Kyle Dewey Date ____________________________________ ____________ Dr. John J. Noga, Chair Date California State University, Northridge ii Dedication This project is dedicated to all of the Computer Science professors that I have come in contact with other the years who have inspired and encouraged me to pursue a career in computer science. The words and wisdom of these professors are what pushed me to try harder and accomplish more than I ever thought possible. I would like to give a big thanks to the open source community and my fellow cohort of computer science co-workers for always being there with answers to my numerous questions and inquiries. Without their guidance and expertise, I could not have been successful. Lastly, I would like to thank my friends and family who have supported and uplifted me throughout the years. Thank you for believing in me and always telling me to never give up. iii Table of Contents Signature Page ................................................................................................................................ ii Dedication .....................................................................................................................................