PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E001466.Full.Pdf
Editorial BMJ Glob Health: first published as 10.1136/bmjgh-2019-001466 on 11 April 2019. Downloaded from WHO recommendations on uterotonics for postpartum haemorrhage prevention: what works, and which one? Joshua P Vogel, 1,2 Myfanwy Williams,3 Ioannis Gallos,4 Fernando Althabe,1 Olufemi T Oladapo1 To cite: Vogel JP, THE GLOBAL BURDEN OF POSTPARTUM trials of tranexamic acid for PPH treatment Williams M, Gallos I, et al. HAEMORRHAGE and a heat-stable formulation of carbetocin WHO recommendations on 6–12 uterotonics for postpartum Obstetric haemorrhage, especially post- for PPH prevention. The increasing haemorrhage prevention: partum haemorrhage (PPH), was responsible number of PPH prevention and management what works, and which for more than a quarter of the estimated 303 options makes it challenging for providers one?BMJ Glob Health 000 maternal deaths that occurred globally in and health system stakeholders to choose 2019;4:e001466. doi:10.1136/ 2015.1 PPH—commonly defined as a blood where and how to invest limited resources in bmjgh-2019-001466 loss of 500 mL or more within 24 hours after order to optimise health outcomes. birth—affects about 6% of all women giving Multiple uterotonics have been eval- Handling editor Seye Abimbola birth.1 Uterine atony is the most common uated for PPH prevention over the past Received 4 February 2019 cause of PPH, but it can also be caused by four decades, including oxytocin receptor Revised 10 March 2019 genital tract trauma, retained placental tissue agonists (oxytocin and carbetocin), prosta- Accepted 16 March 2019 or maternal bleeding disorders. The majority glandin analogues (misoprostol, sulprostone, of women who experience PPH have no iden- carboprost), ergot alkaloids (such as ergo- tifiable risk factor, meaning that PPH preven- metrine/methylergometrine) and combina- tion programmes rely on universal use of PPH tions of these (oxytocin plus ergometrine, © Author(s) (or their prophylaxis for all women in the immediate or oxytocin plus misoprostol). -
Oxytocin Carbetocin
CARBETOCIN To prevent life-threatening pregnanCy CompliCations Postpartum haemorrhage (PPH) is commonly defined as a blood loss of at least 500 ml within 24 hours after birth, and affects about 5% of all women giving birth around the world. Globally, nearly one quarter of all maternal deaths are associated with PPH, and in most low-income countries it is the main cause of maternal mortality. The use of good quality prophylactic uterotonics can avoid the majority of PPH-associated complications during the third stage of labor (the time between the birth of the baby and complete expulsion of the placenta). In settings where oxytocin is unavailable or its quality cannot be guaranteed, the use of other injectable uterotonics (carbetocin, or if appropriate ergometrine/methylergometrine, or oxytocin and ergometrine fixed-dose combination) or oral misoprostol is recommended for the prevention of PPH. The use of carbetocin (100 μg, IM/IV) is recommended for the prevention of PPH for all births in contexts where its cost is comparable to other effective uterotonics. Carbetocin is only recommended for the prevention of postpartum hemorrhage and not recommended for other obstetric indications, such as labor induction, labor augmentation or treatment of PPH. OXYTOCIN Mode of Action CARBETOCIN Synthetic cyclic peptide form of the Long-acting synthetic analogue of naturally occurring posterior oxytocin with agonist properties. pituitary hormone. Binds to oxytocin Binds to oxytocin receptors in the receptors in the uterine myometrium, uterine smooth muscle, resulting in stimulating contraction of this rhythmic contractions, increased uterine smooth muscle by increasing frequency of existing contractions, the sodium permeability of uterine and increased uterine tone. -
List of Union Reference Dates A
Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov. -
Antitumor Effects of Desmopressin in Combination with Chemotherapeutic Agents in a Mouse Model of Breast Cancer GISELLE V
ANTICANCER RESEARCH 28 : 2607-2612 (2008) Antitumor Effects of Desmopressin in Combination with Chemotherapeutic Agents in a Mouse Model of Breast Cancer GISELLE V. RIPOLL, SANTIAGO GIRON, MARTIN J. KRZYMUSKI, GUILLERMO A. HERMO, DANIEL E. GOMEZ and DANIEL F. ALONSO Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Buenos Aires, Argentina Abstract. The vasopressin peptide analog desmopressin has cytotoxicity on tumor cells, suggesting that the compound been used during surgery to prevent bleeding in patients with modulates a complex biological mechanism on the host coagulation defects. Recent experimental and clinical data which influences tumor spread. We further demonstrated that revealed that perioperative desmopressin therapy can perioperative administration of DDAVP dramatically reduced minimize the spread and survival of residual cancer cells. lymph node and lung metastasis in a model of mammary Here, we explored the antitumor effects of desmopressin in tumor manipulation and surgical excision in mice (6). More combination with chemotherapeutic agents using the F3II recently, a veterinary clinical study showed that perioperative mammary carcinoma in syngeneic Balb/c mice. Intravenous DDAVP prolonged disease-free survival in surgically treated administration of desmopressin at a dose of 2 μg/kg together bitches with locally advanced mammary cancer (7). with weekly cycles of carmustine (20 mg/kg) prevented Breast cancer is one of the most commonly diagnosed primary tumor infiltration of the skin. Combination of malignanc ies in women and mortality for the disease is related desmopressin with paclitaxel (25 mg/kg) significantly reduced to the capacity of breast tumor cells to invade and metastasize. metastatic progression to the lung. -
Vasopressin V2 Is a Promiscuous G Protein-Coupled Receptor That Is Biased by Its Peptide Ligands
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.427950; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Vasopressin V2 is a promiscuous G protein-coupled receptor that is biased by its peptide ligands. Franziska M. Heydenreich1,2,3*, Bianca Plouffe2,4, Aurélien Rizk1, Dalibor Milić1,5, Joris Zhou2, Billy Breton2, Christian Le Gouill2, Asuka Inoue6, Michel Bouvier2,* and Dmitry B. Veprintsev1,7,8,* 1Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland 2Department of Biochemistry and Molecular medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA 4The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom 5Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus-Vienna-Biocenter 5, 1030 Vienna, Austria 6Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan. 7Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. 8Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK. *Correspondence should be addressed to: [email protected], [email protected], [email protected]. -
The Oxytocin Receptor Gene (OXTR) Is Associated with Autism Spectrum Disorder: a Meta-Analysis
Molecular Psychiatry (2015) 20, 640–646 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis D LoParo and ID Waldman The oxytocin receptor gene (OXTR) has been studied as a risk factor for autism spectrum disorder (ASD) owing to converging evidence from multiple levels of analysis that oxytocin (OXT) has an important role in the regulation of affiliative behavior and social bonding in both nonhuman mammals and humans. Inconsistency in the effect sizes of the OXTR variants included in association studies render it unclear whether OXTR is truly associated with ASD, and, if so, which OXTR single-nucleotide polymorphisms (SNPs) are associated. Thus, a meta-analytic review of extant studies is needed to determine whether OXTR shows association with ASD, and to elucidate which specific SNPs have a significant effect on ASD. The current meta-analysis of 16 OXTR SNPs included 3941 individuals with ASD from 11 independent samples, although analyses of each individual SNP included a subset of this total. We found significant associations between ASD and the SNPs rs7632287, rs237887, rs2268491 and rs2254298. OXTR was also significantly associated with ASD in a gene-based test. The current meta-analysis is the largest and most comprehensive investigation of the association of OXTR with ASD and the findings suggest directions for future studies of the etiology of ASD. Molecular Psychiatry (2015) 20, 640–646; doi:10.1038/mp.2014.77; published online 5 August 2014 INTRODUCTION sizes.8 Nevertheless, several genes and genomic regions have Autism spectrum disorder (ASD) refers to a group of neuro- shown relatively consistent association with ASD. -
Influence of Demoxytocin on the Behavioural Actions of Melatonin Manoj G
Journal of Experimental Sciences 2011, 2(8): 07-09 ISSN: 2218-1768 www.scholarjournals.org www.jexpsciences.com JES-Life Sciences Influence of Demoxytocin on the Behavioural Actions of Melatonin Manoj G. Tyagi* and M. Selva Murugan Department of Pharmacology, Christian Medical College, Vellore 632002, Tamilnadu, India Article Info Abstract Article History Oxytocin is stored and released by the posterior pituitary gland. In this study, the influence of Received : 05-05-2011 oxytocin agonist, demoxytocin pretreatment on the behavioural actions of melatonin was Revised : 27-07-2011 ascertained. Swiss albino mice (n=6) were used for this study as control and test groups. Accepted : 27-07-2011 Demoxytocin was injected in a concentration of (20 I.U/kg, i.p) and melatonin was injected (200μg/kg, i.p) 30 minutes before experimentation. The effect of pretreatment with *Corresponding Author demoxytocin was evaluated after melatonin injection on motor-coordination and locomotor Tel : +91-416-2284237 activity. The results of our study suggest that demoxytocin was not able to affect significantly Fax : +91-416-2284237 the actions on motor co-ordination but attenuated the locomotor activity after melatonin Email: treatment. [email protected] ©ScholarJournals, SSR Introduction Oxytocin has been shown to have a role in social was approved by the Institutional Review Board (IRB) and care separation and related stress. Oxytocin serves important roles of animals was taken as per guidelines of CPCSEA, in behaviour regulation and plays important role in emotional Department of Animal Welfare, Government of India. and social bonding (Landgraf, 1995). Oxytocin receptor is Drugs and Chemicals expressed in the central nervous system and is a G protein Melatonin tablets were obtained from Aristo coupled receptor. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Transition from Biological to Chemical Assay for Quality Assurance of Medicinal Substances (Apis) and Formulated Preparations
WHO/BS/07.2070 ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva - 8 to 12 October 2007 Discussion paper: Transition from biological to chemical assay for quality assurance of medicinal substances (APIs) and formulated preparations A Bristow National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK ML Rabouhans, J Joung, DJ Wood World Health Organization, Geneva, Switzerland © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected] ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
Rational Use of Uterotonic Drugs During Labour and Childbirth
Prevention and initial management of postpartum haemorrhage Rational use of uterotonic drugs during labour and childbirth Prevention and treatment of postpartum haemorrhage December 2008 Editors This manual is made possible through sup- Prevention of postpartum hemorrhage port provided to the POPPHI project by the initiative (POPPHI) Office of Health, Infectious Diseases and Nu- trition, Bureau for Global Health, US Agency for International Development, under the POPPHI Contacts terms of Subcontract No. 4-31-U-8954, under Contract No. GHS-I-00-03-00028. POPPHI is For more information or additional copies of implemented by a collaborative effort be- this brochure, please contact: tween PATH, RTI International, and Engen- Deborah Armbruster, Project Director derHealth. PATH 1800 K St., NW, Suite 800 Washington, DC 20006 Tel: 202.822.0033 Susheela M. Engelbrecht Senior Program Officer, PATH PO Box 70241 Overport Durban 4067 Tel: 27.31.2087579, Fax: 27.31.2087549 [email protected] Copyright © 2009, Program for Appropriate Tech- www.pphprevention.org nology in Health (PATH). All rights reserved. The material in this document may be freely used for educational or noncommercial purposes, provided that the material is accompanied by an acknowl- edgement line. Table of contents Preface………………………………………………………………………………………………………………………………………………….3 Supportive care during labour and childbirth…………………………………………………………………………………….4 Rational use of uterotonic drugs during labour………………………………………………………………………………...5 Indications and precautions for augmentation -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
2012 Harmonized Tariff Schedule Pharmaceuticals Appendix
Harmonized Tariff Schedule of the United States (2014) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2014) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACEVALTRATE 25161-41-5 ABAFUNGIN 129639-79-8 ACEXAMIC ACID 57-08-9 ABAGOVOMAB 792921-10-9 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABAPERIDONE 183849-43-6 ACITAZANOLAST 114607-46-4 ABARELIX 183552-38-7 ACITEMATE 101197-99-3 ABATACEPT 332348-12-6 ACITRETIN 55079-83-9 ABCIXIMAB 143653-53-6 ACIVICIN 42228-92-2 ABECARNIL 111841-85-1 ACLANTATE 39633-62-0 ABETIMUS 167362-48-3 ACLARUBICIN 57576-44-0 ABIRATERONE 154229-19-3 ACLATONIUM NAPADISILATE 55077-30-0 ABITESARTAN 137882-98-5 ACLIDINIUM BROMIDE 320345-99-1 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURIN 178535-93-8 ACOLBIFENE 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDE 185106-16-5