Croquet – a Collaboration System Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Traits: Experience with a Language Feature
7UDLWV([SHULHQFHZLWKD/DQJXDJH)HDWXUH (PHUVRQ50XUSK\+LOO $QGUHZ3%ODFN 7KH(YHUJUHHQ6WDWH&ROOHJH 2*,6FKRRORI6FLHQFH1(QJLQHHULQJ$ (YHUJUHHQ3DUNZD\1: 2UHJRQ+HDOWKDQG6FLHQFH8QLYHUVLW\ 2O\PSLD$:$ 1::DONHU5G PXUHPH#HYHUJUHHQHGX %HDYHUWRQ$25 EODFN#FVHRJLHGX ABSTRACT the desired semantics of that method changes, or if a bug is This paper reports our experiences using traits, collections of found, the programmer must track down and fix every copy. By pure methods designed to promote reuse and understandability reusing a method, behavior can be defined and maintained in in object-oriented programs. Traits had previously been used to one place. refactor the Smalltalk collection hierarchy, but only by the crea- tors of traits themselves. This experience report represents the In object-oriented programming, inheritance is the normal way first independent test of these language features. Murphy-Hill of reusing methods—classes inherit methods from other classes. implemented a substantial multi-class data structure called ropes Single inheritance is the most basic and most widespread type of that makes significant use of traits. We found that traits im- inheritance. It allows methods to be shared among classes in an proved understandability and reduced the number of methods elegant and efficient way, but does not always allow for maxi- that needed to be written by 46%. mum reuse. Consider a small example. In Squeak [7], a dialect of Smalltalk, Categories and Subject Descriptors the class &ROOHFWLRQ is the superclass of all the classes that $UUD\ +HDS D.2.3 [Programming Languages]: Coding Tools and Tech- implement collection data structures, including , , 6HW niques - object-oriented programming and . The property of being empty is common to many ob- jects—it simply requires that the object have a size method, and D.3.3 [Programming Languages]: Language Constructs and that the method returns zero. -
A Metacircular Architecture for Runtime Optimisation Persistence Clément Béra
Sista: a Metacircular Architecture for Runtime Optimisation Persistence Clément Béra To cite this version: Clément Béra. Sista: a Metacircular Architecture for Runtime Optimisation Persistence. Program- ming Languages [cs.PL]. Université de Lille 1, 2017. English. tel-01634137 HAL Id: tel-01634137 https://hal.inria.fr/tel-01634137 Submitted on 13 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´edes Sciences et Technologies de Lille { Lille 1 D´epartement de formation doctorale en informatique Ecole´ doctorale SPI Lille UFR IEEA Sista: a Metacircular Architecture for Runtime Optimisation Persistence THESE` pr´esent´eeet soutenue publiquement le 15 Septembre 2017 pour l'obtention du Doctorat de l'Universit´edes Sciences et Technologies de Lille (sp´ecialit´einformatique) par Cl´ement B´era Composition du jury Pr´esident: Theo D'Hondt Rapporteur : Ga¨elThomas, Laurence Tratt Examinateur : Elisa Gonzalez Boix Directeur de th`ese: St´ephaneDucasse Co-Encadreur de th`ese: Marcus Denker Laboratoire d'Informatique Fondamentale de Lille | UMR USTL/CNRS 8022 INRIA Lille - Nord Europe Numero´ d’ordre: XXXXX i Acknowledgments I would like to thank my thesis supervisors Stéphane Ducasse and Marcus Denker for allowing me to do a Ph.D at the RMoD group, as well as helping and supporting me during the three years of my Ph.D. -
The Future: the Story of Squeak, a Practical Smalltalk Written in Itself
Back to the future: the story of Squeak, a practical Smalltalk written in itself Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay [Also published in OOPSLA ’97: Proc. of the 12th ACM SIGPLAN Conference on Object-oriented Programming, 1997, pp. 318-326.] VPRI Technical Report TR-1997-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay at Apple Computer while doing this work, now at Walt Disney Imagineering 1401 Flower Street P.O. Box 25020 Glendale, CA 91221 [email protected] Abstract Squeak is an open, highly-portable Smalltalk implementation whose virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change. To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks. Other noteworthy aspects of Squeak include: a compact object format that typically requires only a single word of overhead per object; a simple yet efficient incremental garbage collector for 32-bit direct pointers; efficient bulk- mutation of objects; extensions of BitBlt to handle color of any depth and anti-aliased image rotation and scaling; and real-time sound and music synthesis written entirely in Smalltalk. Overview Squeak is a modern implementation of Smalltalk-80 that is available for free via the Internet, at http://www.research.apple.com/research/proj/learning_concepts/squeak/ and other sites. It includes platform-independent support for color, sound, and image processing. -
Tinlizzie Wysiwiki and Wikiphone: Alternative Approaches to Asynchronous and Synchronous Collaboration on the Web
TinLizzie WysiWiki and WikiPhone: Alternative approaches to asynchronous and synchronous collaboration on the Web Yoshiki Oshima, Takashi Yamamiya, Scott Wallace, and Andreas Raab [Also published in the Proc. of the 5th International Conf. on Creating, Connecting, and Collaborating through Computing (C5 2007)] VPRI Technical Report TR-2007-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 TinLizzie WysiWiki and WikiPhone: Alternative approaches to asynchronous and synchronous collaboration on the Web Yoshiki Ohshimay Takashi Yamamiyay [email protected] [email protected] Scott Wallacey Andreas Raabz [email protected] [email protected] yViewpoints Research Institute zQwaq, Inc. 1209 Grand Central Ave. 460 S California Ave #304 Glendale, CA 91202 Palo Alto, CA 94306 Abstract they exhibit possible future directions for collaboration on the Web. This paper presents TinLizzie WysiWiki and WikiPhone, two systems which explore new approaches to media-rich end-user collaboration on the World Wide Web. 1 Introduction TinLizzie WysiWiki enables authoring of interactive, media-rich documents, containing graphical objects bear- The World Wide Web, or Web, has been very successful. ing user-defined scripts, on the Web. In TinLizzie WysiWiki, It seems nowadays to dictate not only many end-users' be- a user manipulates text and active objects in a WYSIWYG havior, but also the mindsets of researchers and software graphical editor in a manner similar to Squeak eToys. vendors; the perception is that a new system should run A notable aspect of TinLizzie WysiWiki is that it allows in web browsers to be successful. As a consequence, im- both synchronous and asynchronous collaboration among provement in the overall user experience in applications has multiple users. -
The Development of Smalltalk Topic Paper #7
The Development of Smalltalk Topic Paper #7 Alex Laird Max Earn Peer CS-3210-01 Reviewer On Time/Format 1 2/4/09 Survey of Programming Languages Correct 5 Spring 2009 Clear 2 Computer Science, (319) 360-8771 Concise 2 [email protected] Grading Rubric Grading Total 10 pts ABSTRACT Dynamically typed languages are easier on the compiler because This paper describes the development of the Smalltalk it has to make fewer passes and the brunt of checking is done on programming language. the syntax of the code. Compilation of Smalltalk is just-in-time compilation, also known Keywords as dynamic translation. It means that upon compilation, Smalltalk code is translated into byte code that is interpreted upon usage and Development, Smalltalk, Programming, Language at that point the interpreter converts the code to machine language and the code is executed. Dynamic translations work very well 1. INTRODUCTION with dynamic typing. Smalltalk, yet another programming language originally developed for educational purposes and now having a much 5. IMPLEMENTATIONS broader horizon, first appeared publically in the computing Smalltalk has been implemented in numerous ways and has been industry in 1980 as a dynamically-typed object-oriented language the influence of many future languages such as Java, Python, based largely on message-passing in Simula and Lisp. Object-C, and Ruby, just to name a few. Athena is a Smalltalk scripting engine for Java. Little Smalltalk 2. EARLY HISTORY was the first interpreter of the programming language to be used Development for Smalltalk started in 1969, but the language outside of the Xerox PARC. -
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007 Michael Haupt1, Robert Hirschfeld1, and Marcus Denker2 1 Software Architecture Group Hasso-Plattner-Institut University of Potsdam, Germany 2 Software Composition Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland michael.haupt,hirschfeld @hpi.uni-potsdam.de, [email protected] { } Abstract. This position paper proposes the exploitation of type feed- back mechanisms, or more precisely, polymorphic inline caches, for purely interpreting implementations of object-oriented programming languages. Using Squeak’s virtual machine as an example, polymorphic inline caches are discussed as an alternative to global caching. An implementation proposal for polymorphic inline caches in the Squeak virtual machine is presented, and possible future applications for online optimization are outlined. 1 Introduction Bytecode interpreters are small in size and comparatively easy to implement, but generally execute programs much less efficiently than just-in-time (JIT) compilers. Techniques like threaded interpretation [9, 11, 2] focus on speeding up bytecode interpretation itself, and caching [4, 5, 1] improves the performance of message sends—the most common operation in object-oriented software [7]. It is interesting to observe that, while threading mechanisms are used natu- rally to a varying degree in bytecode interpreter implementations, such systems usually employ only global caching to speed up dynamic method dispatch. A global cache is clearly beneficial with respect to overall performance. Still, it does not provide optimal support for polymorphic message send sites, and it does not allow for exploiting type information (we provide details on these issues in the following section). In our opinion, the employment of polymorphic inline caches (PICs) [5] instead can provide means for achieving significant speedups in bytecode interpreters while exhibiting only a moderate increase in memory footprint and implementation complexity. -
Graphical Interface
Appendix: How to program in Croquet Author: S.M. Wolff Project: Cell-Forum Project Table of Contents Table of Contents .............................................................................................................. 2 Graphical Interface ........................................................................................................... 6 Control structures .............................................................................................................. 9 Testing variables ............................................................................................................... 9 If then else ........................................................................................................................ 10 Switch ............................................................................................................................ 10 While .............................................................................................................................. 10 For .................................................................................................................................. 11 Data structures ............................................................................................................ 12 Ordered Collection ...................................................................................................... 12 Classes, Methods and Shared Variables .................................................................... 13 Packages ..................................................................................................................... -
CONFERENCE COMPANION ESUG 2008 - 16Th International Smalltalk Conference
ESUG-2008 CONFERENCE COMPANION ESUG 2008 - 16th International Smalltalk Conference CONTENTS Platinum Sponsors.......................................................................................................... 3 Gold Sponsors................................................................................................................ 4 Conference Location....................................................................................................... 5 Program Overview........................................................................................................... 8 Saturday, August 23...................................................................................................... 10 Sunday, August 24......................................................................................................... 10 Monday, August 25....................................................................................................... 11 Tuesday, August 26....................................................................................................... 16 Wednesday, August 27.................................................................................................. 20 Thursday, August 28...................................................................................................... 23 Friday, August 29........................................................................................................... 27 Program Overview........................................................................................................ -
The Cedar Programming Environment: a Midterm Report and Examination
The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman t CSL-83-11 June 1984 [P83-00012] © Copyright 1984 Xerox Corporation. All rights reserved. CR Categories and Subject Descriptors: D.2_6 [Software Engineering]: Programming environments. Additional Keywords and Phrases: integrated programming environment, experimental programming, display oriented user interface, strongly typed programming language environment, personal computing. t The author's present address is: Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Ca. 94043. The work described here was performed while employed by Xerox Corporation. XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 1 Abstract: This collection of papers comprises a report on Cedar, a state-of-the-art programming system. Cedar combines in a single integrated environment: high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for the programmer to use in the construction and debugging of his programs. The Cedar Programming Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially interesting about the Ce~ar project is that it is one of the few examples where an interactive, experimental programming environment has been built for this kind of language. In the past, such environments have been confined to dynamically typed languages like Lisp and Smalltalk. The first paper, "The Roots of Cedar," describes the conditions in 1978 in the Xerox Palo Alto Research Center's Computer Science Laboratory that led us to embark on the Cedar project and helped to define its objectives and goals. -
2008 Chevrolet Cobalt Owner Manual M
2008 Chevrolet Cobalt Owner Manual M Seats and Restraint Systems ........................... 1-1 Driving Your Vehicle ....................................... 4-1 Front Seats ............................................... 1-2 Your Driving, the Road, and Your Vehicle ..... 4-2 Rear Seats ............................................... 1-9 Towing ................................................... 4-32 Safety Belts ............................................. 1-10 Service and Appearance Care .......................... 5-1 Child Restraints ....................................... 1-30 Service ..................................................... 5-3 Airbag System ......................................... 1-53 Fuel ......................................................... 5-5 Restraint System Check ............................ 1-68 Checking Things Under the Hood ............... 5-10 Features and Controls ..................................... 2-1 Headlamp Aiming ..................................... 5-39 Keys ........................................................ 2-3 Bulb Replacement .................................... 5-42 Doors and Locks ...................................... 2-10 Windshield Wiper Blade Replacement ......... 5-48 Windows ................................................. 2-15 Tires ...................................................... 5-49 Theft-Deterrent Systems ............................ 2-18 Appearance Care ..................................... 5-95 Starting and Operating Your Vehicle ........... 2-21 Vehicle Identification -
MVC Revival on the Web
MVC Revival on the Web Janko Mivšek [email protected] @mivsek @aidaweb ESUG 2013 Motivation 30 years of Smalltalk, 30 years of MVC 34 years exa!tly, sin!e "#$# %ot in JavaScri&t MVC frameworks 'or Sin(le)*age and +ealtime web a&&s ,e Smalltalkers s-ould respe!t and revive our &earls better Contents MVC e &lained %istory /sa(e in !.rrent JavaScri&t frameworks /sa(e in Smalltalk C.rrent and f.t.re MVC in 0ida/Web MVC Explained events Ar!hite!tural desi(n &attern - Model for domain s&e!ifi! data and logi! View updates Controller ) View for &resentation to t-e .ser ) Controller for intera!tions wit- t-e .ser UI and .&datin( domain model Domain changes Main benefit: actions observing ) se&aration of !on!erns Model MVC based on Observer pattern subscribe ) 3bserver looks at observee Observer changed - 3bservee is not aware of t-at s u 4e&enden!y me!-anism2 B t n - 3bserver is de&endent on 3bservee state e observing v - 3bservee m.st re&ort state !-an(es to 3bserver E b - *.b/S.b Event 6.s de!ou&les 3bservee from u S / 3bserver to &reserve its .nawarnes of observation b u changed P Observee Main benefit: (Observable) ) se&aration of !on!erns Multiple observers subscribe - M.lti&le observers of t-e same 3bservee Observer changed - 7n MVC an 3bservee is View and 3bservee is domain Model, t-erefore2 s u B t - many views of t-e same model n e observing v - many a&&s E b - many .sers u S / - mix of all t-ree !ases b u Observee changed P (Observable) Example: Counter demo in Aida/Web M.lti.ser realtime web !ounter exam&le -ttp://demo.aidaweb.si – !li!k Realtime on t-e left – !li!k De!rease or In!rease to c-an(e counter – !ounter is c-an(ed on all ot-er8s browsers History of MVC (1) 7nvented by 9rygve +eenska.g w-en -e worked in "#$:1$# wit- Alan ;ay's group on <ero *arc on Smalltalk and Dynabook – 'inal term Model)View)Controller !oined 10. -
Dynamic Object-Oriented Programming with Smalltalk
Dynamic Object-Oriented Programming with Smalltalk 1. Introduction Prof. O. Nierstrasz Autumn Semester 2009 LECTURE TITLE What is surprising about Smalltalk > Everything is an object > Everything happens by sending messages > All the source code is there all the time > You can't lose code > You can change everything > You can change things without restarting the system > The Debugger is your Friend © Oscar Nierstrasz 2 ST — Introduction Why Smalltalk? > Pure object-oriented language and environment — “Everything is an object” > Origin of many innovations in OO development — RDD, IDE, MVC, XUnit … > Improves on many of its successors — Fully interactive and dynamic © Oscar Nierstrasz 1.3 ST — Introduction What is Smalltalk? > Pure OO language — Single inheritance — Dynamically typed > Language and environment — Guiding principle: “Everything is an Object” — Class browser, debugger, inspector, … — Mature class library and tools > Virtual machine — Objects exist in a persistent image [+ changes] — Incremental compilation © Oscar Nierstrasz 1.4 ST — Introduction Smalltalk vs. C++ vs. Java Smalltalk C++ Java Object model Pure Hybrid Hybrid Garbage collection Automatic Manual Automatic Inheritance Single Multiple Single Types Dynamic Static Static Reflection Fully reflective Introspection Introspection Semaphores, Some libraries Monitors Concurrency Monitors Categories, Namespaces Packages Modules namespaces © Oscar Nierstrasz 1.5 ST — Introduction Smalltalk: a State of Mind > Small and uniform language — Syntax fits on one sheet of paper >