Vietoris–Rips and Čech Complexes of Metric Gluings Michał Adamaszek MOSEK ApS Copenhagen, Denmark
[email protected] https://orcid.org/0000-0003-3551-192X Henry Adams Department of Mathematics, Colorado State University Fort Collins, CO, USA
[email protected] https://orcid.org/0000-0003-0914-6316 Ellen Gasparovic Department of Mathematics, Union College Schenectady, NY, USA
[email protected] https://orcid.org/0000-0003-3775-9785 Maria Gommel Department of Mathematics, University of Iowa Iowa City, IA, USA
[email protected] https://orcid.org/0000-0003-2714-9326 Emilie Purvine Computing and Analytics Division, Pacific Northwest National Laboratory Seattle, WA, USA
[email protected] https://orcid.org/0000-0003-2069-5594 Radmila Sazdanovic1 Department of Mathematics, North Carolina State University Raleigh, NC, USA
[email protected] https://orcid.org/0000-0003-1321-1651 Bei Wang2 School of Computing, University of Utah Salt Lake City, UT, USA
[email protected] https://orcid.org/0000-0002-9240-0700 Yusu Wang3 Department of Computer Science, The Ohio State University Columbus, OH, USA
[email protected] https://orcid.org/0000-0001-7950-4348 1 Simons Collaboration Grant 318086 2 NSF IIS-1513616 and NSF ABI-1661375 3 NSF CCF-1526513, CCF-1618247, and CCF-1740761 © Michał Adamaszek, Henry Adams, Ellen Gasparovic, Maria Gommel, Emilie Purvine, Radmila Sazdanovic, Bei Wang, Yusu Wang, and Lori Ziegelmeier; licensed under Creative Commons License CC-BY 34th International Symposium on Computational Geometry (SoCG 2018). Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 3; pp. 3:1–3:15 Leibniz International Proceedings in Informatics Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany Lori Ziegelmeier Department of Mathematics, Statistics, and Computer Science, Macalester College Saint Paul, MN, USA
[email protected] https://orcid.org/0000-0002-1544-4937 Abstract We study Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings.