Multiparticle Interferometry and the Superposition Principle Daniel M

Total Page:16

File Type:pdf, Size:1020Kb

Multiparticle Interferometry and the Superposition Principle Daniel M Physics Today Multiparticle Interferometry and the Superposition Principle Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger Citation: Physics Today 46(8), 22 (1993); doi: 10.1063/1.881360 View online: http://dx.doi.org/10.1063/1.881360 View Table of Contents: http://scitation.aip.org/content/aip/magazine/physicstoday/46/8?ver=pdfcov Published by the AIP Publishing [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to ]]] IP: 129.174.21.5 On: Wed, 20 Nov 2013 16:03:31 MULTIPARIICLE INTERFEROMETRY AND THE SUPERPOSITION PRINCIPLE We're just beginning to understand the ramifications of the superposition principle at the heart of quantum mechanics. Multiparticle interference experiments can exhibit wonderful new phenomena. Daniel M. Greenberger, Michael A. Home and Anton Zeilinger Discussing the particle analog of Thomas Young's classic ing interferometry with down-conversion photon pairs. double-slit experiment, Richard Feynman wrote in 1964 Down-conversion is a process in which one ultraviolet that it "has in it the heart of quantum mechanics. In photon converts into two photons inside a nonlinear reality, it contains the only mystery."1 That mystery is crystal.4 This process allows one to construct "two-par- the one-particle superposition principle. But Feynman's ticle interferometers" that entangle the two photons in a discussion and statement have to be generalized. Super- way that needn't involve polarization at all. Many ex- position may be the only true quantum mystery, but in perimental groups independently came up with this idea, multiparticle systems the principle yields phenomena but the first explicit proposal was made by two of us.5 that are much richer and more interesting than anything Real experiments commenced when Carroll Alley and that can be seen in one-particle systems. Yan Hua Shih6 at the University of Maryland first used The famous 1935 paper by Albert Einstein, Boris down-conversion to produce an entangled state and when Podolsky and Nathan Rosen pointed out some startling Ruba Ghosh and Leonard Mandel7 at the University of features of two-particle quantum theory.2 Erwin Rochester first produced two-particle fringes without us- Schrodinger emphasized that these features are due to ing polarizers. Since these pioneering efforts, many in- the existence of what he called "entangled states," which creasingly sophisticated experiments have been per- are two-particle states that cannot be factored into prod- formed, with important lessons for quantum theory. ucts of two single-particle states in any representation. In all of these two-particle experiments, the source "Entanglement" is simply Schrodinger's name for super- of the entanglement has been down-conversion. We will position in a multiparticle system. Schrodinger was so discuss a small sampling of recent developments, with taken with the significance of multiparticle superposition particular emphasis on the fundamental ideas. Three- that he said entanglement is "not one but rather the particle interferometry is even richer, and we shall say characteristic trait of quantum mechanics." something about it. But it is mostly unexplored territory, Until the mid-1980s, the quintessential example of both experimentally and theoretically. 1 an entangled state was the singlet state of two spin- /^ One of our motivations for writing this article was particles, to make the point that one doesn't have to be a quantum optics expert to understand or analyze such experiments. They illustrate beautifully the general principles of quan- tum mechanics, and they can be understood, both quali- or its photon analog. The subscripts 1 and 2 refer to the tatively and quantitatively, in those terms. Calculations two particles (distinguished, for example, by their flight based on detailed nonlinear quantum optics Hamiltonians directions), and the plus and minus signs refer to spin do describe specific mechanisms. But they tend to ob- up or down with respect to any specified axis. This state scure the generality of the conclusions, which depend of two spatially separated particles was introduced into 3 primarily on the fact that if one cannot distinguish (even the Einstein-Podolsky-Rosen discussion by David Bohm in principle) between different paths from source to de- in 1951. It inspired a spate of experiments in the 1970s tector, the amplitudes for these alternative paths will and '80s. add coherently. Since the mid-1980s there has been a revolution in the laboratory preparation of new types of two-particle Two-particle double-slit interferometry entanglements. Various experimental groups started do- Figure 1 is a sketch of an idealized two-particle interfer- ence experiment that nonetheless exhibits some intrigu- Daniel Greenberger is a professor of physics at the City ing phenomena which have been verified experimentally. College of New York. Michael Home is a professor of Consider a particle fl near the center that can decay into physics at Stonehill College, in North Easton, Massachusetts. two daughter particles. If the original particle is essen- Anton Zeilinger is a professor of physics at the Institute for tially at rest, then the momenta of its two daughters will be approximately equal and opposite. Now imagine that Experimental Physics of the University of Innsbruck, in there are screens on both sides of the center, each with Austria. [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. PHYSICS TODAY AUGUST 1993 1990 Amencon Insrirure of Physics 22 Downloaded to ]]] IP: 129.174.21.5 On: Wed, 20 Nov 2013 16:03:31 Idealized two-particle interferometer has two detecting screens (green) flanking two collimating screens, each with a pair of holes, that bracket a source (orange) of decaying particles at the center. The vertical extension of the source is d. A particle fi decays at height x above the center line into two particles (trajectories in red) that hit their respective detecting screens at heights y and z. Because one can't tell whether the pair passes through holes A and A' or B and B', these alternatives can interfere. Figure 1 two holes in it, as shown in the figure. These holes fere constructively. Note that one cannot catch such confine the escaping decay particles to either of a pair of two-particle interference patterns on film at either screen; opposite directions. The decay particles can pass either one has to record coincidences. through holes A and A' or through holes B and B'. We One may well ask how one particle could have any can then write the state of the two-particle system as knowledge of where the other can land, especially when the source position is unknown and therefore the first \f> = (1/V2")(|a>1 |a'>2 + |6>! |6'>2) particle doesn't even know where it itself will land. The answer is that by landing at a specific point, one particle where the letter in the state-vector bracket denotes the actually creates a sinusoidal amplitude of possible posi- escape direction defined by the corresponding holes. Beyond tions where the source is likely to have been—a sort of the two perforated screens are two scintillation screens that "virtual crystal." This crystal in turn creates the two- record the positions of particles landing on them. particle diffraction pattern. Virtual slit systems can be Because each of the particles can reach its detecting exploited in actual experiments.8 screen by way of two different paths, one might expect these To see how this works here, let us for simplicity screens to show interference patterns. But they don't. consider only the vertical degree of freedom .v for the That's where the two-particle interferometer differs from a source position relative to the horizontal center line in single-particle interferometer based on Young's classic dou- figure 1. And let us say that the decay particles are ble-slit experiment. There is no interfence pattern at either photons. If y and z are the corresponding vertical dis- screen in these two-particle experiments because, for rea- tances above center of the landing points P and P, sons that will become clear, the vertical position of the respectively, then the quantum mechanical amplitude for decaying particle is unknown to within some source size d landing at P is that is considerably larger than A/8, where 8 is the angle subtended by the hole pairs at the source, and A is the 2TT0 relevant wavelength—optical or de Broglie, as the case may exp{ikLa) cos —T—(y + x) be. Thus the initial position uncertainty d washes out any interference fringes. where k is 2IT IA and the L's are the alternative path lengths for the photon on the right side of the apparatus. Similarly In the single-particle case, by contrast, the geometry the amplitude for the other photon to land at P is is so determined, usually by lenses, that the source is effectively a point. Its positional uncertainty is much 2TT8 smaller than A/8, so that the waves arrive at the two I/> ~ cos —\~{z + x) holes with a definite phase relation and therefore inter- Then the total amplitude for the two photons to land at fere. The experimenter produces a diffraction pattern by controlling the geometry of the emission process. heights of x and y, respectively, above center will be In the two-particle case, something like the opposite d/2 1 f 2nd 2TT6 of this process happens. With a large source, if one looks + x) at either particle separately, one sees no interference iy,z) ~ — I ax cos —j~(y + x) cos pattern.
Recommended publications
  • The Case for Quantum Key Distribution
    The Case for Quantum Key Distribution Douglas Stebila1, Michele Mosca2,3,4, and Norbert Lütkenhaus2,4,5 1 Information Security Institute, Queensland University of Technology, Brisbane, Australia 2 Institute for Quantum Computing, University of Waterloo 3 Dept. of Combinatorics & Optimization, University of Waterloo 4 Perimeter Institute for Theoretical Physics 5 Dept. of Physics & Astronomy, University of Waterloo Waterloo, Ontario, Canada Email: [email protected], [email protected], [email protected] December 2, 2009 Abstract Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement. 1 Introduction Since its discovery, the field of quantum cryptography — and in particular, quantum key distribution (QKD) — has garnered widespread technical and popular interest. The promise of “unconditional security” has brought public interest, but the often unbridled optimism expressed for this field has also spawned criticism and analysis [Sch03, PPS04, Sch07, Sch08]. QKD is a new tool in the cryptographer’s toolbox: it allows for secure key agreement over an untrusted channel where the output key is entirely independent from any input value, a task that is impossible using classical1 cryptography. QKD does not eliminate the need for other cryptographic primitives, such as authentication, but it can be used to build systems with new security properties.
    [Show full text]
  • 2013 Industry Canada Report
    Industry Canada Report 2012/13 Reporting Period Institute for Quantum Computing University of Waterloo June 15, 2013 Industry Canada Report | 2 Note from the Executive Director Harnessing the quantum world will lead to new technologies and applications that will change the world. The quantum properties of nature allow the accomplishment of tasks which seem intractable with today’s technologies, offer new means of securing private information and foster the development of new sensors with precision yet unseen. In a short 10 years, the Institute for Quantum Computing (IQC) at the University of Waterloo has become a world-renowned institute for research in the quantum world. With more than 160 researchers, we are well on our way to reaching our goal of 33 faculty, 60 post doctoral fellows and 165 students. The research has been world class and many results have received international attention. We have recruited some of the world’s leading researchers and rising stars in the field. 2012 has been a landmark year. Not only did we celebrate our 10th anniversary, but we also expanded into our new headquarters in the Mike and Ophelia Lazaridis Quantum-Nano Centre in the heart of the University of Waterloo campus. This 285,000 square foot facility provides the perfect environment to continue our research, grow our faculty complement and attract the brightest students from around the globe. In this report, you will see many examples of the wonderful achievements we’ve celebrated this year. IQC researcher Andrew Childs and his team proposed a new computational model that has the potential to become an architecture for a scalable quantum computer.
    [Show full text]
  • Quantum Communications Hub Annual Report
    Contents Foreword 3 Introduction 4 Quantum Communications Hub – Vision 5 Quantum Key Distribution 6 Technology Themes 7 The Partnership 9 Strategy, Advice, Leadership 10 The Project Team 14 Governance 15 Project Website 16 The Quantum Communications Hub – The First 12 Months 17 Commercialisation Routes and Partners 22 User Engagement 23 Formal Launch of the Hub 23 Highlight on the Adastral Park Cluster 25 Highlight on The National Quantum Technologies Showcase 26 Highlight on KETS 27 Highlight on Standards 28 Impact on Policy 29 Future Research Directions 33 Appendices 40 1 2 Introduction The UK National Quantum Technologies Programme (UKNQTP) is a UK Government initiative designed to support translation of quantum science into commercial Foreword technological applications. The aim is to turn world-leading science into new technologies and services, creating catalysts for new markets, thus boosting the UK economy and resulting in demonstrable effects across all spheres of verydaye The UK National Quantum Technologies Programme life. Unlike previous investments in what are perceived as emerging and promising has been established to turn the results of world-leading new areas for growth, the focus of this particular programme is on technological scientific research into actual technologies. In the Quantum development and commercialisation, rather than generation of new science. This Communications Hub, it is our job to do this in the secure approach is based on the strength of the UK’s academic leadership in quantum science, communications sector. In this sector some technologies coupled with the acknowledgment of the timeliness of technological advances in and demonstrators already exist, so the goal of the Hub is this area.
    [Show full text]
  • Arxiv:2101.11503V2 [Quant-Ph] 26 Jul 2021 Bell State Is Reached
    Experimental Single-Copy Entanglement Distillation Sebastian Ecker,1, 2, ∗ Philipp Sohr,1, 2 Lukas Bulla,1, 2 Marcus Huber,1, 3 Martin Bohmann,1, 2 and Rupert Ursin1, 2, y 1Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria 2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria 3Institute for Atomic and Subatomic Physics, Vienna University of Technology, 1020 Vienna, Austria The phenomenon of entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances through photons is unfortunately hindered by unavoidable decoherence effects. Entanglement distillation is a means of restoring the quality of such diluted entanglement by concentrating it into a pair of qubits. Conventionally, this would be done by distributing multiple photon pairs and distilling the entanglement into a single pair. Here, we turn around this paradigm by utilising pairs of single photons entangled in multiple degrees of freedom. Specifically, we make use of the polarisation and the energy-time domain of photons, both of which are extensively field-tested. We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8 %. Compared to the two-copy scheme, the distillation rate of our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks. Entanglement lies at the heart of quantum physics, two-photon CNOT gate cannot be deterministically re- reflecting the quantum superposition principle between alised with passive linear optics [19{22].
    [Show full text]
  • All-Optical Synchronization for Quantum Networking Lufti Arif Bin Ngah
    All-optical synchronization for quantum networking Lufti Arif Bin Ngah To cite this version: Lufti Arif Bin Ngah. All-optical synchronization for quantum networking. Other [cond-mat.other]. Université Nice Sophia Antipolis, 2015. English. NNT : 2015NICE4141. tel-01292197 HAL Id: tel-01292197 https://tel.archives-ouvertes.fr/tel-01292197 Submitted on 22 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ NICE SOPHIA ANTIPOLIS - UFR Sciences ÉCOLE DOCTORALE EN SCIENCES FONDAMENTALES ET APPLIQUÉES Ph.D Dissertation to obtain the title of Docteur en Sciences of Université Nice Sophia Antipolis (UNS), France. Specialization : Physics Presented by Lutfi Arif BIN NGAH All-optical synchronization for quantum networking. Synchronisation toute optique d’un réseau de communication quantique. Defended on December 11, 2015 Jury : Reviewers: Sara Ducci Professor Université Paris Diderot - Paris 7 Rosa Tualle-Brouri Professor Inst. Optique Graduate School, Palaiseau Examinator: John G. Rarity Professor University of Bristol (UK) Advisors: Sébastien Tanzilli DR CNRS Université Nice Sophia Antipolis Virginia D’Auria MCF Université Nice Sophia Antipolis All-optical synchronization for quantum networking. Abstract: This manuscript reports the development of fundamental resources for long distance quantum communication based on fibre telecom technology and non-linear op- tical waveguides.
    [Show full text]
  • OFC/NFOEC 2012 Archive
    OFC/NFOEC 2012 Archive Technical Conference: March 4-8, 2012 Exposition: March 6-10, 2012 Los Angeles Convention Center, Los Angeles, CA, USA The optical communications industry’s leading event wrapped up last week in Los Angeles with increased attendance, a larger show floor and plenty of buzz and enthusiasm surrounding the innovations presented in the technical sessions. Nearly 800 technical presentations covered topics such as an elastic optical network for enabling terabit speeds, a graphene-based optical modulator, a record-speed wireless data bridge, and optical interconnects for enabling future computers. The popular post-deadline paper session, which saw a spike of 25% more submissions this year, featured the most timely breakthroughs in the research field – including a record 405 Terabit/s transmission speed demonstrated by a team of researchers in Japan. OFC/NFOEC’s most well-attended program, the Plenary and Awards Session, featured three high-level speakers on three unique topics. Isao Sugino, R&D director in Japan’s Ministry of Internal Affairs and Communications gave a comprehensive overview the devastation caused to the telecommunication networks in Japan after the March 2011 earthquake and tsunami, as well as a look at what Japan is doing to protect its ICT infrastructure against future disasters. Greg Papadopoulos, venture partner with New Enterprise Associates and former CTO of Sun Microsystems, spoke on exa-scale computing and what it means for the optics industry. Google’s Vice President of Access Networks, Milo Medin, spoke on the current “age of abundance” and what that means for bandwidth, network speeds, and consumer demand.
    [Show full text]
  • Frontiers in Optics 2010/Laser Science XXVI
    Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao.
    [Show full text]
  • The LED As Low Cost Single Photon Source
    Linares Vallejo, E., Dahnoun, N., & Rarity, J. (2017). El LED como fuente de fotones individuales. Revista Internacional de Investigación e Innovación Tecnológica (RIIIT), 5(29). http://riiitingles.businesscatalyst.com/index.html Peer reviewed version License (if available): Unspecified Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via RIIIT at http://riiitingles.businesscatalyst.com/index.html. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ LED as a low cost single photon source E.L inares-Vallejo, N. Dahnoun, J.G. Rarity Department of Electrical and Electronic Engineering, University of Bristol; BS8 1TR. Bristol, United Kingdom, [email protected] , [email protected] , [email protected] . Technological innovation: Low cost single photon source. Industrial application area: Quantum cryptography, Quantum computing, Quantum entanglement and Quantum teleportation. Abstract Single photon sources use anti-bunched light to produce single photons, and in this article it describes an application. With a light emitter diode (LED) as a low cost single photon source using weak light coherent pulses, the appropriate use of radiofrequency (RF) circuits to control the LED depletion zone, it could achieve an emission of optical pulses appropriated to the electrical pulses in the LED excitation to generate single photons.
    [Show full text]
  • QUARC: Quantum Research Cubesat—A Constellation for Quantum Communication
    cryptography Article QUARC: Quantum Research Cubesat—A Constellation for Quantum Communication Luca Mazzarella 1,∗,† , Christopher Lowe 2 , David Lowndes 3 , Siddarth Koduru Joshi 3 , Steve Greenland 4, Doug McNeil 4, Cassandra Mercury 4, Malcolm Macdonald 2, John Rarity 3 and Daniel Kuan Li Oi 1 1 SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK; [email protected] 2 Department of Mechanical and Aerospace Engineering, University of Strathclyde, Level 8, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK; [email protected] (C.L.); [email protected] (M.M.) 3 Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK; [email protected] (D.L.); [email protected] (S.K.J.); [email protected] (J.R.) 4 Craft Prospect ltd. Tontine building, 20 Trongate, Glasgow G1 5ES, UK; [email protected] (S.G.); [email protected] (D.M.); [email protected] (C.M.) * Correspondence: [email protected] † Current address: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 298-102, Pasadena, CA 91109, USA. Received: 23 December 2019; Accepted: 21 February 2020; Published: 27 February 2020 Abstract: Quantum key distribution (QKD) offers future proof security based on fundamental laws of physics. Long-distance QKD spanning regions such as the United Kingdom (UK) may employ a constellation of satellites. Small satellites, CubeSats in particular, in low Earth orbit are a relatively low-cost alternative to traditional, large platforms.
    [Show full text]
  • Scalable Authentication and Optimal Flooding in a Quantum Network
    Scalable authentication and optimal flooding in a quantum network 1, 2, 3 3 Naomi R. Solomons, ¤ Alasdair I. Fletcher, ¤ Djeylan Aktas, Natarajan Venkatachalam, Sören Wengerowsky,4 Martin Lonˇcari´c,5 Sebastian P. Neumann,6 Bo Liu,7 Željko Samec,5 Mario Stipˇcevi´c,5 Rupert Ursin,6 Stefano Pirandola,2 John G. Rarity,3 and Siddarth Koduru Joshi3,† 1Quantum Engineering Technology Labs & Quantum Engineering Centre for Doctoral Training, Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, United Kingdom 2Department of Computer Science, University of York, York, YO10 5GH United Kingdom 3Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, United Kingdom 4Institute for Quantum Optics and Quantum Information - Vienna (IQOQI) & Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria & Institut de Ciencies Fotoniques (ICFO), Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain 5Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruder¯ Boškovi´cInstitute, Zagreb, Croatia 6Institute for Quantum Optics and Quantum Information - Vienna (IQOQI) & Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria 7College of Advanced Interdisciplinary Studies, NUDT, Changsha, 410073, China The global interest in quantum networks stems from the security guaranteed by the laws of physics. De- ploying quantum networks means facing the challenges of scaling up the physical hardware and, more im- portantly, of scaling up all other network layers and optimally utilising network resources. Here we consider two related protocols, their experimental demonstrations on an 8-user quantum network test-bed, and dis- cuss their usefulness with the aid of example use cases.
    [Show full text]
  • Physics and Sport
    physicsworld.com Volume 25 No 7 July 2012 PHYSICS AND SPORT The principles behind success HEAT EXCHANGER: Surface-to-surface radiation from the outside shell to the pipe walls transfers heat energy to a molten salt that then transports it to a turbine. Verify and optimize your designs with COMSOL Multiphysics.® Multiphysics tools let you build simulations that accurately replicate the important characteristics of your designs. The key is the ability to include all physical e ects that exist in the real world. Order a free CD containing 700 multiphysics presentations at www.comsol.com/confcd Product Suite COMSOL Multiphysics MECHANICAL MULTIPURPOSE LiveLink™ for Pro/ENGINEER® Heat Transfer Module Optimization Module LiveLink™ for Creo™ Parametric FLUID Structural Mechanics Module Material Library LiveLink™ for Inventor® CFD Module Nonlinear Structural Materials Module Particle Tracing Module LiveLink™ for AutoCAD® Pipe Flow Module Geomechanics Module LiveLink™ for MATLAB® Microfl uidics Module Acoustics Module INTERFACING Subsurface Flow Module CAD Import Module ELECTRICAL File Import for CATIA® V5 CHEMICAL AC/DC Module LiveLink™ for SolidWorks® Chemical Reaction Engineering Module RF Module LiveLink™ for SpaceClaim® Batteries & Fuel Cells Module MEMS Module Electrodeposition Module Plasma Module Corrosion Module Contact us at 01223 451580 © Copyright 2012. COMSOL, COMSOL Multiphysics and LiveLink are either registered trademarks or trademarks of COMSOL AB. AutoCAD and Inventor are registered trademarks of Autodesk, Inc., in the USA and other countries. LiveLink for AutoCAD and LiveLink for Inventor are not affi liated with, endorsed by, sponsored by, or supported by Autodesk, Inc., and/or its affi liates and/or subsidiaries. MATLAB is a registered trademark of The Mathworks, Inc.
    [Show full text]
  • Quantum Communications Hub Annual Report
    2015 2016 Contents Foreword i Introduction 3 Summary of the Second Year 4 The Partnership 8 Management & Leadership 9 The Project Team 11 Overview: The Second Year 12 Technology Development: Progress in the Second Year 13 Highlight on: 2nd UK - Japan Quantum Technologies Workshop 20 Highlight on: Continuous Variable Quantum Key Distribution 21 Highlight on: Quantum-Secured Network Function Virtualisation 22 Highlight on: Quantum Digital Signatures 23 Highlight on: International Satellite QKD Technologies Workshop 24 Highlight on: Blackett Review of Quantum Technologies 25 Highlight on: Quantum Europe and the EU Flagship Programme 26 Highlight on: 2nd National Quantum Technologies Showcase 27 Development of Industrial Standards for Quantum Key Distribution 28 Expanding the Partnership through Collaboration with Industry 29 Partnership Resource Investment 30 Training - Quantum Meets Modern: Hub Training Days on Modern Cryptography 34 Public Engagement and Outreach 36 Appendices 38 Special thanks to all contributors: Erika Andersson, Klitos Andrea, Gerald Buller, Emilio Hugues-Salas, Rupesh Kumar, Georgia Mortzou, Reza Nejabati, Kenny Paterson, John Rarity, Andrew Shields, Timothy Spiller, Mark Thompson, Adrian Wonfor. Thanks to the following for kindly providing images: Professor Erika Andersson, Professor Gerald Buller, Dr Robert Collins, Dr Andrew Shields, Dr Adrian Wonfor, the Centre for Quantum Photonics (Quantum Engineering Technology Labs) University of Bristol, the Quantum Europe 2016 conference organising team, the National Institute of Information and Communications Technology in Japan. Copyright: Toshiba Research Europe Ltd Foreword As part of the wider UK National Quantum Technologies Programme, the Quantum Communications Hub is delivering new quantum technologies for secure data services applicable to commercial, consumer, defence and government markets.
    [Show full text]