Under the Direction of William S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Synthesis and Structural Characterization of Glucooligosaccharides and Dextran from Weissella Confusa Dextransucrases
YEB Recent Publications in this Series Dextran from and and Structural Characterization of Glucooligosaccharides QIAO SHI Synthesis 4/2016 Hany S.M. EL Sayed Bashandy Flavonoid Metabolomics in Gerbera hybrida and Elucidation of Complexity in the Flavonoid Biosynthetic Pathway 5/2016 Erja Koivunen Home-Grown Grain Legumes in Poultry Diets 6/2016 Paul Mathijssen DISSERTATIONES SCHOLA DOCTORALIS SCIENTIAE CIRCUMIECTALIS, Holocene Carbon Dynamics and Atmospheric Radiative Forcing of Different Types of Peatlands ALIMENTARIAE, BIOLOGICAE. UNIVERSITATIS HELSINKIENSIS 21/2016 in Finland 7/2016 Seyed Abdollah Mousavi Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza spp. 8/2016 Sedeer El-Showk Auxin and Cytokinin Interactions Regulate Primary Vascular Patterning During Root QIAO SHI Development in Arabidopsis thaliana 9/2016 Satu Olkkola Antimicrobial Resistance and Its Mechanisms among Campylobacter coli and Campylobacter Synthesis and Structural Characterization of upsaliensis with a Special Focus on Streptomycin 10/2016 Windi Indra Muziasari Glucooligosaccharides and Dextran from Impact of Fish Farming on Antibiotic Resistome and Mobile Elements in Baltic Sea Sediment Weissella confusa Dextransucrases 11/2016 Kari Kylä-Nikkilä Genetic Engineering of Lactic Acid Bacteria to Produce Optically Pure Lactic Acid and to Develop a Novel Cell Immobilization Method Suitable for Industrial Fermentations 12/2016 Jane Etegeneng Besong epse Ndika Molecular Insights into a Putative Potyvirus RNA Encapsidation -
Transferable Step-Potentials For
© 2013 ANTHONY COFFMAN ALL RIGHTS RESERVED PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Anthony Coffman December, 2013 PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA Anthony Coffman Thesis Approved: Accepted: ___________________________________ ___________________________________ Advisor Department Chair Dr. Lu-Kwang Ju Dr. Lu-Kwang Ju ___________________________________ ___________________________________ Committee Member Dean of The College Dr. Gang Cheng Dr. George K. Haritos ___________________________________ ___________________________________ Committee Member Dean of the Graduate School Dr. Chelsea N. Monty Dr. George R. Newkome ___________________________________ Date ii ABSTRACT Trichoderma reesei RUT-C30 was cultivated in shaker flasks and pH-controlled, agitated batch fermentations to study the effects of soy-based media on the production of cellulase, xylanase, and pectinase (polygalacturonase) for the purposes of soybean polysaccharide hydrolysis. Growth on defatted soybean flour as sole nitrogen source was compared to the standard combination of ammonium sulfate, proteose peptone, and urea. Carbon source effect was also examined for a variety of substrates, including lactose, microcrystalline cellulose (Avicel), citrus pectin, soy molasses, soy flour hydrolysate, and soybean hulls (both pretreated and natural). Flask study results indicated exceptional enzyme induction by Avicel and soybean hulls, while citrus pectin, soy molasses, and soy flour hydrolysate did not promote enzyme production. Batch fermentation experiments reflected the flask system results, showing the highest cellulase and xylanase activities for systems grown with Avicel and soybean hulls at near-neutral pH levels, and the highest polygalacturonase activity resulting from growth on lactose and soybean hulls at lower pH levels, 4.0 to 4.5. -
Identification and Characterization of an Endo-Glucanase Secreted From
Pang et al. BMC Biotechnology (2019) 19:63 https://doi.org/10.1186/s12896-019-0556-0 RESEARCH ARTICLE Open Access Identification and characterization of an Endo-glucanase secreted from cellulolytic Escherichia coli ZH-4 Jian Pang1,3, Junshu Wang2*, Zhanying Liu1,3*, Qiancheng Zhang1 and Qingsheng Qi2 Abstract Background: In the previous study, the cellulolytic Escherichia coli ZH-4 isolated from bovine rumen was found to show extracellular cellulase activity and could degrade cellulose in the culture. The goal of this work was to identify and characterize the secreted cellulase of E. coli ZH-4. It will be helpful to re-understand E. coli and extend its application in industry. Results: A secreted cellulase was confirmed to be endo-glucanase BcsZ which was encoded by bcsZ gene and located in the cellulose synthase operon bcsABZC in cellulolytic E. coli ZH-4 by western blotting. Characterization of BcsZ indicated that a broad range of pH and temperature tolerance with optima at pH 6.0 and 50 °C, respectively. The apparent Michaelis–Menten constant (Km) and maximal reaction rate (Vmax) for BcsZ were 8.86 mg/mL and 0.3 μM/ min·mg, respectively. Enzyme activity of BcsZ was enhanced by Mg2+ and inhibited by Zn2+,Cu2+ and Fe3+. BcsZ could hydrolyze carboxymethylcellulose (CMC) to produce cello-oligosaccharides, cellotriose, cellobiose and glucose. Conclusions: It is confirmed that extracellular cellulolytic capability of E. coli ZH-4 was attributed to BcsZ, which explained why E. coli ZH-4 can grow on cellulose. The endo-glucanase BcsZ from E. coli-ZH4 has some new characteristics which will extend the understanding of endo-glucanase. -
INVERTASE from SACCHAROMYCES CEREVISIAE
INVERTASE from SACCHAROMYCES CEREVISIAE New specifications prepared at the 57th JECFA (2001) and published in FNP 52 Add 9 (2001); previously prepared at the 15th JECFA (1971) as part of the specifications for “Carbohydrase from Saccharomyces species”, published in FNP 52. The use of this enzyme was considered to h be acceptable by the 57t JECFA (2001) if limited by Good Manufacturing Practice. SYNONYMS INS No. 1103 SOURCES Produced by the controlled submerged aerobic fermentation of a non- pathogenic and non-toxigenic strain of Saccharomyces cerevisiae and extracted from the yeast cells after washing and autolysis. Active principles β-Fructofuranosidase (synonym: invertase, carbohydrase, saccharase) Systematic names and β-Fructofuranosidase (EC 3.2.1.26; C.A.S. No. 9001-57-4) numbers Reactions catalysed Hydrolyses sucrose to yield glucose and fructose DESCRIPTION Typically white to tan amorphous powders or liquids that may be dispersed in food grade diluents and may contain stabilisers; soluble in water and practically insoluble in ethanol and ether. FUNCTIONAL USES Enzyme preparation Used in confectionery and pastry applications GENERAL Must conform to the General Specifications and Considerations for SPECIFICATIONS Enzyme Preparations Used in Food Processing (see Volume Introduction) CHARACTERISTICS IDENTIFICATION The sample shows invertase activity See description under TESTS TESTS Invertase activity Principle Invertase hydrolyses the non-reducing β-d-fructofuranoside residues of sucrose to yield invert sugar. The invert sugar released is then reacted with 3.5 dinitrosalicylic acid (DNS). The colour change produced is proportional to the amount of invert sugar released, which in turn is proportional to the invertase activity present in the sample. -
Invertase from Baker's Yeast (S
Invertase from baker's yeast (S. cerevisiae) Catalog Number I4504 Storage Temperature –20 °C CAS RN 9001-57-4 Reported KM values are 25 mM for sucrose and EC 3.2.1.26 150 mM for raffinose. At high substrate concentrations Synonyms: Saccharase, b-Fructofuranosidase, (1 M), invertase exhibits transferase activity by b-D-Fructofuranoside fructohydrolase transferring the b-D-fructofuranosyl residue to primary alcohols including ethanol, methanol, and n-propanol. Product Description Invertase does not require any activators and is Molecular mass:1 270 kDa inhibited by iodine, Zn2+, and Hg2+.1,3 Extinction coefficient:1 E1% = 23.0 (280 nm) pI:2 3.4–4.4 Precautions and Disclaimer This product is for R&D use only, not for drug, Invertase from baker's yeast is a glycoprotein household, or other uses. Please consult the Material containing 50% mannan and 2-3% glucosamine. During Safety Data Sheet for information regarding hazards purification, a small percentage of the enzyme may and safe handling practices. have part of the carbohydrate moiety removed leaving a heterogeneous enzyme with a lower or even negligible Preparation Instructions mannan content. This difference in carbohydrate This enzyme is soluble in water (10 mg/ml), yielding a content has led to the conclusion that two forms of the clear solution. enzyme exist. An external invertase (predominant form), carbohydrate containing, located outside of the References cell membrane and an internal invertase, which is 1. Lampen, J.O., The Enzymes, Boyer, P.D., ed., located entirely within the cytoplasm and devoid of any Academic Press (New York, NY:1971), carbohydrate.1,3 pp. -
A Xyloglucan-Specific Endo-Β-1,4-Glucanase from Aspergillus Aculeatus: Expression Cloning in Yeast, Purification and Characterization of the Recombinant Enzyme
Glycobiology vol. 9 no. 1 pp. 93–100, 1999 A xyloglucan-specific endo-β-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme Markus Pauly, Lene N.Andersen1, Sakari Kauppinen1, may also modulate the action of a XG endotransglycosylase Lene V.Kofod1, William S.York2, Peter Albersheim and (XET), a cell wall–associated enzyme that may play a role in the Alan Darvill elongation of plant cell walls (Fry et al., 1992). Therefore, XG Complex Carbohydrate Research Center and Department of Biochemistry and metabolism might play an important role in wall loosening and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, consequent cell expansion. GA 30602–4712, USA and 1Novo Nordisk A/S, Novo Alle, The fine structural features of XG reflect its metabolic history, DK-2880 Bagsværd, Denmark and so analysis of the oligosaccharide subunit composition of XGs Received on May 4, 1998; revised on June 2, 1998; accepted on June 7, 1998 isolated from plant tissues under varying physiological conditions can reveal a correlation between cell expansion and XG metabolism 2To whom correspondence should be addressed (Guillen et al., 1995). XG is often solubilized by treating cell walls A full-length c-DNA encoding a xyloglucan-specific with strong alkali (e.g., 4 M KOH), perhaps by disruption of the endo-β-1,4-glucanase (XEG) has been isolated from the hydrogen bonds between XG and cellulose (Hayashi et al., 1987). filamentous fungus Aspergillus aculeatus by expression However, this harsh chemical treatment of the wall destroys some cloning in yeast. -
Production of Carbohydrases for Developing Soy Meal As
PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Qian Li May, 2017 PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED Qian Li Dissertation Approved: Accepted: Advisor Department Chair Dr. Lu-Kwang Ju Dr. Michael H. Cheung Committee Member Dean of the College Dr. Jie Zheng Dr. Donald P. Visco Jr. Committee Member Dean of the Graduate School Dr. Lingyun Liu Dr. Chand Midha Committee Member Date Dr. Ge Zhang Committee Member Dr. Pei-Yang Liu ii ABSTRACT Global demand for seafood is growing rapidly and more than 40% of the demand is met by aquaculture. Conventional aquaculture diet used fishmeal as the protein source. The limited production of fishmeal cannot meet the increase of aquaculture production. Therefore, it is desirable to partially or totally replace fishmeal with less-expensive protein sources, such as poultry by-product meal, feather meal blood meal, or meat and bone meal. However, these feeds are deficient in one or more of the essential amino acids, especially lysine, isoleucine and methionine. And, animal protein sources are increasingly less acceptable due to health concerns. One option is to utilize a sustainable, economic and safe plant protein sources, such as soybean. The soybean industry has been very prominent in many countries in the last 20 years. The worldwide soybean production has increased 106% since 1996 to 2010[1]. Soybean protein is becoming the best choice of sustainable, economic and safe protein sources. -
Lupinus Albus -Conglutin, a Protein Structurally Related to GH12
International Journal of Molecular Sciences Article Lupinus albus γ-Conglutin, a Protein Structurally Related to GH12 Xyloglucan-Specific Endo-Glucanase Inhibitor Proteins (XEGIPs), Shows Inhibitory Activity against GH2 β-Mannosidase Stefano De Benedetti y , Elisabetta Galanti y, Jessica Capraro , Chiara Magni and Alessio Scarafoni * Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (S.D.B.); [email protected] (E.G.); [email protected] (J.C.); [email protected] (C.M.) * Correspondence: [email protected] Those authors contributed equally to this work. y Received: 10 September 2020; Accepted: 30 September 2020; Published: 3 October 2020 Abstract: γ-conglutin (γC) is a major protein of Lupinus albus seeds, but its function is still unknown. It shares high structural similarity with xyloglucan-specific endo-glucanase inhibitor proteins (XEGIPs) and, to a lesser extent, with Triticum aestivum endoxylanase inhibitors (TAXI-I), active against fungal glycoside hydrolases GH12 and GH11, respectively. However, γC lacks both these inhibitory activities. Since β-galactomannans are major components of the cell walls of endosperm in several legume plants, we tested the inhibitory activity of γC against a GH2 β-mannosidase (EC 3.2.1.25). γC was actually able to inhibit the enzyme, and this effect was enhanced by the presence of zinc ions. The stoichiometry of the γC/enzyme interaction was 1:1, and the calculated Ki was 1.55 µM. To obtain further insights into the interaction between γC and β-mannosidase, an in silico structural bioinformatic approach was followed, including some docking analyses. -
GRAS Notice 756, Endo-1,4-Beta-Glucanase from Trichoderma Reesei
GRAS Notice (GRN) No. 756 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm AB Enzymes AB Enzymes GmbH - Feldbergstrasse 78, D-64293 Darmstadt January 5, 2018 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GR GRAS Notification for an endo-1,4-13- glucanase from a genetically modified Trichoderma reesei AB Enzymes GmbH, we are submitting for FDA review, Form 3667, one paper copy, and the enclosed CD, free of viruses, containing a GRAS notification for endo-1,4-13- glucanase. The attached documentation contains the specific information that addresses the safe human food uses for the subject notified substances as discussed in GRAS final rule, 21 CFR Part 170.30 (a)(b), subpart E. Please contact the undersigned by telephone or email if you have any questions or additional information is required. We look forward to your feedback. Candice Cryne Regulatory Affairs Manager 1 647-919-3964 Candi [email protected] Form Approved: 0MB No. 0910-0342 ; Expiration Date: 09/30/2019 (See last page for 0MB Statement) FDA USE ONLY GRN NUMBER DATE OF,~ CEIPT ~(!)t:) "76@ I '2..11-J 2o g DEPARTMENT OF HEAL TH AND HUMAN SERVICES ESTIMATED DAILY INTAKE INTENDED USE FOR INTERNET Food and Drug Administration GENERALLY RECOGNIZED AS SAFE - NAME FOR INTERNET (GRAS) NOTICE (Subpart E of Part 170) KEYWORDS Transmit completed form and attachments electronically via the Electronic Submission Gateway (see Instructions); OR Transmit completed form and attachments in paper format or on physical media to: Office of Food Additive Safety (HFS-200), Center for Food Safety and Applied Nutrition, Food and Drug Administration,5001 Campus Drive, College Park, MD 20740-3835. -
Lactose Intolerance
Lactose Intolerance Enzyme Digestion Lab Activity SCIENTIFIC BIO AX! Introduction F Intestinal gas, bloating, and stomach cramps—oh my! This can be a common concern for a majority of the world’s population who lack the enzyme to digest certain foods. Milk and dairy products, for example, cause problems for many people who lack the enzyme required to digest lactose, the main carbohydrate found in milk. This lab activity illustrates the use of a commercial enzyme product called Lactaid™ as an aid in milk digestion. Concepts • Enzyme • Disaccharide • Metabolism Materials Galactose, 2 g Balloons, 4 Lactaid™, ½ tablet, Graduated cylinder, 10 mL Lactose, 4 g Mini soda bottles, 4 Sucrose, 2 g Resealable plastic bag Yeast, suspension, 40 mL Water bath, 35–40 °C Safety Precautions Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Wash hands thoroughly with soap and water before leaving the laboratory. Follow all laboratory safety guidelines. Please review current Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Obtain a warm water bath (35–40 °C) or an insulating block. Place the test Lactose tubes in the insulating block or test tube rack. plus Lactose Sucrose Galactose Lactaid 2. Weigh out the dry ingredients prior to the demonstration. 3. Review the summary diagram of the demonstration setup shown in Figure 1. 4. Clearly label each test tube as shown in Figure 1. 5. Place 2 g of the appropriate dry sugar into each test tube, as shown in Figure 1. 6. Add pre-ground Lactaid™ tablet to one flask containing 2 g lactose, as shown in Figure 1. -
Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins
applied sciences Article Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins Adnan Mukhtar 1,2,* , Sajid Latif 1 and Joachim Müller 1 1 Tropics and Subtropics Group, Institute of Agricultural Engineering (440e), University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (S.L.); [email protected] (J.M.) 2 Sub-Campus Depalpur Okara, Institute of Horticulture Sciences, University of Agriculture Faisalabad, Renala Khurd 56300, Pakistan * Correspondence: [email protected] or [email protected]; Tel.: +49-0711-459-24708 Abstract: Recently, fruit-drying industries are showing great interest in producing dry fruits that preserve a high enzyme content. Therefore, this study aimed to investigate the effect of hot-air convective drying on activity retention of amylase and invertase in dried mango of varieties Sindri, Samar Bahisht (SB) Chaunsa, and Tommy Atkins. Convection drying was conducted under over-flow mode at five temperatures (40, 50, 60, 70, and 80 ◦C), two air velocities (1.0 and 1.4 m s−1), and constant specific humidity of 10 g kg−1 dry air. The enzymatic degradation data were fitted to the first-order reaction kinetics model, in which the temperature dependence of the rate constant Citation: Mukhtar, A.; Latif, S.; is modelled by the Arrhenius-type relationship. Results showed that the maximum amylase and Müller, J. Effect of Hot-Air invertase activity for dried mango of all three varieties was best preserved in samples dried at a Convective Drying on Activity temperature of 80 ◦C and an air velocity of 1.4 m s−1.