Cellular Factors Influencing Semliki Forest Virus Vector Biology

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Factors Influencing Semliki Forest Virus Vector Biology Gene Therapy (2005) 12, S111–S117 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt CONFERENCE PAPER Cellular factors influencing Semliki Forest Virus vector biology E Piver1, C Collin2, A Diatta1, P Vaudin1 and J-C Page`s1 1Universite´ Franc¸ois Rabelais, The Vector Group, Faculte´ de Me´decine, Tours, France; and 2Biochemistry, Trousseau University Hospital, Tours, France Viral vectors are currently the best tools for gene delivery in transduction, and transgene expression, in view of the cellular a therapeutic setting, especially for in vivo use. Alphaviruses, factors that affect each individual step. Classical virology will a family of positive singlestranded RNA viruses, have been benefit from the knowledge accumulated studying vectors, and engineered to allow the formation of a highly efficient replicon. such work will shed light on crosstalk between intruding Using these replicons, it is possible to generate recombinant viruses and their hosts. Ultimately, these data should help the particles. Parental viruses and recombinant vectors share design of vectors adapted to specific target cells. certain pathways while interacting with their target cells. In this Gene Therapy (2005) 12, S111–S117. doi:10.1038/ review, we describe the consecutive events leading to sj.gt.3302625 Keywords: VLP; endocytosis; TLR; IFN and SFV vectors Introduction noteworthy that vectors would take advantage of a precise and complete knowledge of the alphavirus cell cycle. Virally driven tumour cytotoxicity is an expanding field A companion paper by Lundstrom10 gives a useful in antitumoral research.1–6 Technically, it relies on two overview of the main steps of the alphavirus life cycle, exclusive modus operandi, tumour-restricted cytolytic introducing the essential features needed to understand replicative viruses or suicidal recombinant viral vectors. alphavirus vectors. In addition, we will comment on Whereas several viral genera have been employed for the use of an unconventional trans-complementation both approaches, only adenovirus based agents are approach for the production of SFV vectors.16 We have currently in the clinic.7,8 recently described an efficient procedure for the mobi- Among the viral vectors, those derived from alpha- lization of SFV replicons by the means of virus-like viruses occupy a specialized niche.9,10 Semliki Forest particles (VLP) (Figure 1). These particles are made of a Virus (SFV) and Sindbis Virus (SV) are the main two membrane-anchored vesicular stomatitis virus glyco- alphaviruses from which vectors have been obtained.11,12 protein (VSV-G) protein forming a lipo-protein shell In agreement with their biology, these vectors are encapsulating a full-length SFV replicon.16 More recently predominantly adapted to high levels of transient we have shown that the biological behaviour of the VLP transgene expression. This results from an optimized resembles that of viral particles in several ways, leading cytoplasmic genomic replication combined with the to cell entry (Diatta et al unpublished data). We also cytotoxic effect induced by a number of virally encoded observed unexpected features that triggered a series proteins.9 The clinical applications of SFV-derived of experiments dedicated to the understanding of the vectors are therefore restrained to situations where such relationship established between the SFV replicon and its a pattern of expression appears suitable, namely, genetic- cellular environment. based vaccination and the eradication of an invasive cell As noticed in other viral taxa, such as retroviruses, proliferation, as observed in cancer. Moreover, recent viruses and cells have evolved several molecular mechan- experimental reports showed that alphavirus-derived isms that rule their biological association.17 In the present vectors harbour an unexpected specificity to replication review, we will concentrate on alphavirus-derived vectors in tumour cells.13–15 Nevertheless, numerous features of biology with a specific interest on cellular factors. Host SFV biology remain open to clarification. This knowledge gene products exert a dual effect; on the one hand, some might lead to technological improvements and extend proteins positively participate in viral replication and, the use of SFV-derived vectors. conversely, when induced upon infection, other cellular In order to develop better tools, two topics are the focus products aim to hamper viral propagation. of ongoing studies, biosafety issues as well as the understanding of cancer cell replication specificities. It is Replicon is the basic structure of SFV vectors Correspondence: J-C Page`s, Universite´ Franc¸ois Rabelais, EA 3856-IFR 136, The Vector Group, Faculte´ de Me´decine 10 Bd Tonnelle´, 37000 Tours, Shortly after the genetic organization and sequence of France alphavirus was determined, several vector systems were Cellular factors and SFV vectors E Piver et al S112 Figure 1 Representation of the different steps in VLP production process. At day 1, the transcomplementing, envelope expressing plasmid is transfected; followed, at day 2, by a DNA form of the replicon. Viral harvest is performed at day 3. CMV: immediate-early cytomegalovirus promoter. VSV-G: vesicular stomatitis virus glycoprotein. NsP: nonstructural proteins. R.S: retroviral sequence. IRES: internal ribosome entry site. EGFP: enhanced GFP. engineered to promote gene delivery and expression vectors must preserve some features of the regular viral from various strains of alphavirus, including SFV.18,19 cycle while eliminating others. The most striking The most striking feature of an SFV-derived vector is its difference between nonreplicating viral vectors and the genetic structure, which allows the generation of a self- wild type parental virus, resides in the late events replicating element, the replicon. A SFV replicon is governing particle formation, which are nondesirable composed of a single RNA that contains all the genetic most of the time and are therefore hampered in the case information needed for self-amplification and transgene of vectors. Conversely, early events that allow efficient expression. There are two ways by which the replicon transgene delivery must be indistinguishable in the two could be delivered to a target cell.4,20–22 The most species. It is noteworthy that each step of the viral cycle common system is based on RNA or DNA transfection. is susceptible to target-cell-specific modulation. For in vivo use, the formation of recombinant particles is possible through trans-complementation. However, in Entry the case of recombinant particle formation, safety issues Classically, the sequential events leading to delivery of must be considered since recombination events are the viral genomic material are divided into entry, frequent and lead to fully replicative autonomous 23 including decapsidation, which is followed by the particles. Genetic modification of the trans-comple- cytoplasmic addressing of the viral genome.27 At the mentation vectors has recently improved the safety of 23 end of the latter process, the viral genome is addressed to SFV vectors. Considering the biosafety, the VLP offer the cellular compartment where it will ultimately a relevant alternative to recombinant SFV. One key replicate and drive expression of the viral gene products. advantage conferred by the VLP comes from the Efficient, virally promoted, cellular entry is the raison heterologous origin of the trans-complementing materi- 16 d’eˆtre for the use of recombinant viruses in gene transfer. al. Of note, in this approach, replicon packaging is not All viruses, including alphaviruses, enter a target cell based on an interaction between the SFV capsid and using a defined pathway that involves a virally encoded a sequence contained within the nonstructural protein protein expressed at the particle surface and a cellular (nsP) 2 open reading frame of the full length SFV RNA. receptor at the plasma membrane.27 First, we shall Thus, we had to find a substitutive method to achieve the consider the envelope protein density at the particle exclusive packaging of a complete replicon. Indeed, Rolls 24,25 surface, together with the receptor exposed at the cell et al showed that alike VLP were able to package surface. For retroviruses, these two features are known genomic RNA as efficiently as sub-genomic. The sub- to directly influence entry.28–30 In the case of SFV vectors, genomic RNAs that don’t have auto-replicative capabil- the high amount of envelope proteins generated through ities are not suitable for gene transfer approaches. sub genomic translation appears to prevent a deficient Therefore, we have introduced several mutations into envelope filling of the particles. Conversely, receptor the internal 26S promoter. In the absence of sub-genomic based restriction has been described for SFV.31 While the RNA synthesis, we obtained an exclusive packaging of precise receptor for SFV is still unknown, it is acknowl- the fully autonomous genomic RNA. To obtain success- edged to be widely expressed.32 Therefore, cells resistant ful transgene expression, it was hence necessary to use to transduction might express the protein but fail to an internal translation initiation, which can efficiently be make it available. In some circumstances, this defect in obtained by using a picorna virus internal ribosome 26 receptor accessibility could be circumvented by the use entry sequence (IRES). of nonspecific chemical agents that promote enveloped virus–cellular membrane interaction.31
Recommended publications
  • A Zika Virus Envelope Mutation Preceding the 2015 Epidemic Enhances Virulence and Fitness for Transmission
    A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission Chao Shana,b,1,2, Hongjie Xiaa,1, Sherry L. Hallerc,d,e, Sasha R. Azarc,d,e, Yang Liua, Jianying Liuc,d, Antonio E. Muruatoc, Rubing Chenc,d,e,f, Shannan L. Rossic,d,f, Maki Wakamiyaa, Nikos Vasilakisd,f,g,h,i, Rongjuan Peib, Camila R. Fontes-Garfiasa, Sanjay Kumar Singhj, Xuping Xiea, Scott C. Weaverc,d,e,k,l,2, and Pei-Yong Shia,d,e,k,l,2 aDepartment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555; bState Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; cDepartment of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; dInstitute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555; eInstitute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555; fDepartment of Pathology, University of Texas Medical Branch, Galveston, TX 77555; gWorld Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555; hCenter for Biodefence and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555; iCenter for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555; jDepartment of Neurosurgery-Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; kSealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555; and lSealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved July 2, 2020 (received for review March 26, 2020) Arboviruses maintain high mutation rates due to lack of proof- recently been shown to orchestrate flavivirus assembly through reading ability of their viral polymerases, in some cases facilitating recruiting structural proteins and viral RNA (8, 9).
    [Show full text]
  • Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions
    CB28CH16-Valdivia ARI 5 September 2012 17:10 Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions Hector Alex Saka and Raphael Valdivia Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina 27710; email: [email protected] Annu. Rev. Cell Dev. Biol. 2012. 28:411–37 Keywords First published online as a Review in Advance on eicosanoids, interferon, autophagy May 11, 2012 The Annual Review of Cell and Developmental Abstract Biology is online at cellbio.annualreviews.org Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to Access provided by Duke University on 10/14/19. For personal use only. This article’s doi: eukaryotic cells. It is increasingly recognized that LDs interact exten- 10.1146/annurev-cellbio-092910-153958 sively with other organelles and that they perform functions beyond Annu. Rev. Cell Dev. Biol. 2012.28:411-437. Downloaded from www.annualreviews.org Copyright c 2012 by Annual Reviews. passive lipid storage and lipid homeostasis. One emerging function for All rights reserved LDs is the coordination of immune responses, as these organelles par- 1081-0706/12/1110-0411$20.00 ticipate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy.
    [Show full text]
  • A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
    A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 .​ Though we are reasonably sure the genes here are well annotated, we want to note that not every ​ protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. ​ ​ In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study.
    [Show full text]
  • Following Acute Encephalitis, Semliki Forest Virus Is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA C
    viruses Article Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life Rennos Fragkoudis 1,2, Catherine M. Dixon-Ballany 1, Adrian K. Zagrajek 1, Lukasz Kedzierski 3 and John K. Fazakerley 1,3,* ID 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK; [email protected] (R.F.); [email protected] (C.M.D.-B.); [email protected] (A.K.Z.) 2 The School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK 3 Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-9731-2281 Received: 25 April 2018; Accepted: 17 May 2018; Published: 18 May 2018 Abstract: Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain.
    [Show full text]
  • Replication of Semliki Forest Virus: Polyadenylate in Plus- Strand RNA and Polyuridylate in Minus-Strand RNA
    JOURNAL OF VIROLOGY, Nov. 1976, p. 446-464 Vol. 20, No. 2 Copyright X) 1976 American Society for Microbiology Printed in U.S.A. Replication of Semliki Forest Virus: Polyadenylate in Plus- Strand RNA and Polyuridylate in Minus-Strand RNA DOROTHEA L. SAWICKI* AND PETER J. GOMATOS Division of Virology, The Sloan-Kettering Institute, New York, New York 10021 Received for publication 4 June 1976 The 42S RNA from Semliki Forest virus contains a polyadenylate [poly(A)] sequence that is 80 to 90 residues long and is the 3'-terminus of the virion RNA. A poly(A) sequence of the same length was found in the plus strand of the replicative forms (RFs) and replicative intermediates (RIs) isolated 2 h after infection. In addition, both RFs and RIs contained a polyuridylate [poly(U)] sequence. No poly(U) was found in virion RNA, and thus the poly(U) sequence is in minus-strand RNA. The poly(U) from RFs was on the average 60 residues long, whereas that isolated from the RIs was 80 residues long. Poly(U) sequences isolated from RFs and RIs by digestion with RNase Ti contained 5'-phosphoryl- ated pUp and ppUp residues, indicating that the poly(U) sequence was the 5'- terminus of the minus-strand RNA. The poly(U) sequence in RFs or RIs was free to bind to poly(A)-Sepharose only after denaturation of the RNAs, indicating that the poly(U) was hydrogen bonded to the poly(A) at the 3'-terminus of the plus-strand RNA in these molecules. When treated with 0.02 g.g of RNase A per ml, both RFs and RIs yielded the same distribution of the three cores, RFI, RFII, and RFIII.
    [Show full text]
  • Kunjin Virus Replicon Vectors for Human Immunodeficiency Virus Vaccine Development† Tracey J
    JOURNAL OF VIROLOGY, July 2003, p. 7796–7803 Vol. 77, No. 14 0022-538X/03/$08.00ϩ0 DOI: 10.1128/JVI.77.14.7796–7803.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Kunjin Virus Replicon Vectors for Human Immunodeficiency Virus Vaccine Development† Tracey J. Harvey,1,2 Itaru Anraku,1,2,3 Richard Linedale,1,2 David Harrich,1 Jason Mackenzie,1,2 Andreas Suhrbier,3 and Alexander A. Khromykh1,2* Downloaded from Sir Albert Sakzewski Virus Research Centre, Royal Children’s Hospital,1 Clinical Medical Virology Centre,2 and The Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research,3 University of Queensland, Brisbane, Queensland, Australia Received 2 December 2002/Accepted 29 April 2003 We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8؉ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, http://jvi.asm.org/ and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8؉ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of >1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8؉ T-cell responses, with one -immunization of KUNgag VLPs inducing 4.5-fold-more CD8؉ T cells than the number induced after immu nization with recombinant vaccinia virus carrying the gag gene (rVVgag).
    [Show full text]
  • In Vitro Evolution of High-Titer, Virus-Like Vesicles Containing a Single Structural Protein
    In vitro evolution of high-titer, virus-like vesicles containing a single structural protein Nina F. Rosea, Linda Buonocorea, John B. Schella, Anasuya Chattopadhyaya, Kapil Bahla, Xinran Liub, and John K. Rosea,1 aDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510; and bCenter for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510 Edited* by Robert A. Lamb, Northwestern University, Evanston, IL, and approved October 22, 2014 (received for review August 6, 2014) Self-propagating, infectious, virus-like vesicles (VLVs) are gener- RNA. These proteins form a complex that directs replication of ated when an alphavirus RNA replicon expresses the vesicular the genomic RNA to form antigenomic RNA, which is then stomatitis virus glycoprotein (VSV G) as the only structural protein. copied to form full-length positive strand RNA and a subgenomic The mechanism that generates these VLVs lacking a capsid protein mRNA that encodes the structural proteins. The capsid protein has remained a mystery for over 20 years. We present evidence encases the genomic RNA in the cytoplasm and then buds from that VLVs arise from membrane-enveloped RNA replication facto- the cell surface in a membrane containing the SFV glycoproteins. ries (spherules) containing VSV G protein that are largely trapped Alphavirus RNA replication occurs inside light-bulb shaped, on the cell surface. After extensive passaging, VLVs evolve to membrane-bound compartments called spherules that initially grow to high titers through acquisition of multiple point muta- form on the cell surface and are then endocytosed to form cyto- tions in their nonstructural replicase proteins.
    [Show full text]
  • Identification of Novel Antiviral Compounds Targeting Entry Of
    viruses Article Identification of Novel Antiviral Compounds Targeting Entry of Hantaviruses Jennifer Mayor 1,2, Giulia Torriani 1,2, Olivier Engler 2 and Sylvia Rothenberger 1,2,* 1 Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland; [email protected] (J.M.); [email protected] (G.T.) 2 Spiez Laboratory, Swiss Federal Institute for NBC-Protection, CH-3700 Spiez, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-21-314-51-03 Abstract: Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Citation: Mayor, J.; Torriani, G.; Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, Engler, O.; Rothenberger, S.
    [Show full text]
  • Chikungunya Vaccine Candidates Elicit Protective Immunity in C57BL/6 Mice
    Novel attenuated chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice Author Hallengard, David, Kakoulidou, Maria, Lulla, Aleksei, Kummerer, Beate M., Johansson, Daniel X., Mutso, Margit, Lulla, Valeria, Fazakerley, John K., Roques, Pierre, Le Grand, Roger, Merits, Andres, Liljestrom, Peter Published 2014 Journal Title Journal of Virology Version Version of Record (VoR) DOI https://doi.org/10.1128/JVI.03453-13 Copyright Statement © 2013 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/343708 Griffith Research Online https://research-repository.griffith.edu.au Novel Attenuated Chikungunya Vaccine Candidates Elicit Protective Immunity in C57BL/6 mice David Hallengärd,a Maria Kakoulidou,a Aleksei Lulla,b Beate M. Kümmerer,c Daniel X. Johansson,a Margit Mutso,b Valeria Lulla,b John K. Fazakerley,d Pierre Roques,e,f Roger Le Grand,e,f Andres Merits,b Peter Liljeströma Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Swedena; Institute of Technology, University of Tartu, Tartu, Estoniab; Institute of Virology, University of Bonn Medical Centre, Bonn, Germanyc; The Pirbright Institute, Pirbright, United Kingdomd; Division of Immuno-Virology, iMETI, CEA, Paris, Francee; UMR-E1, University Paris-Sud XI, Orsay, Francef ABSTRACT Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encod- ing nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA.
    [Show full text]
  • Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion
    Viruses 2015, 7, 3647-3674; doi:10.3390/v7072792 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion Mareike K. S. van Duijl-Richter, Tabitha E. Hoornweg, Izabela A. Rodenhuis-Zybert and Jolanda M. Smit * Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands; E-Mails: [email protected] (M.K.S.D.-R.); [email protected] (T.E.H.); [email protected] (I.A.R.-Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-50-3632738. Academic Editors: Yorgo Modis and Stephen Graham Received: 4 May 2015 / Accepted: 29 June 2015 / Published: 7 July 2015 Abstract: Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
    [Show full text]
  • RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten RESEARCH ARTICLE Host-Microbe Biology crossm RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems Isabelle Dietrich,a* Stephanie Jansen,b Gamou Fall,c Stephan Lorenzen,b Martin Rudolf,b Katrin Huber,b,d Anna Heitmann,b Sabine Schicht,h El Hadji Ndiaye,e Mick Watson,f Ilaria Castelli,g Benjamin Brennan,a a e c g Richard M. Elliott, Mawlouth Diallo, Amadou A. Sall, Anna-Bella Failloux, Downloaded from Esther Schnettler,a,b Alain Kohl,a Stefanie C. Beckerb,h MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdoma; Bernhard-Nocht- Institut für Tropenmedizin, Hamburg, Germanyb; Institut Pasteur de Dakar, Arbovirus and Viral Hemorrhagic Fever Unit, Dakar, Senegalc; German Mosquito Control Association (KABS/GFS), Waldsee, Germanyd; Institut Pasteur de Dakar, Medical Entomology Unit, Dakar, Senegale; The Roslin Institute, Royal (Dick) School of Veterinary Studies, Division of Genetics and Genomics, University of Edinburgh, Easter Bush, Edinburgh, United Kingdomf; Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, Franceg; Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germanyh http://msphere.asm.org/ ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference Received 23 February 2017 Accepted 31 March 2017 Published 3 May 2017 (RNAi) has been characterized as an important innate immune defense mechanism Citation Dietrich I, Jansen S, Fall G, Lorenzen S, used by mosquitoes to limit replication of positive-sense RNA flaviviruses and toga- Rudolf M, Huber K, Heitmann A, Schicht S, viruses; however, little is known about its role against negative-strand RNA viruses Ndiaye EH, Watson M, Castelli I, Brennan B, such as RVFV.
    [Show full text]
  • The Glycoproteins of Porcine Reproductive and Respiratory Syndrome Virus and Their Role in Infection and Immunity
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Veterinary and Veterinary and Biomedical Sciences, Biomedical Science Department of 8-2010 THE GLYCOPROTEINS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS AND THEIR ROLE IN INFECTION AND IMMUNITY Phani B. Das University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/vetscidiss Part of the Veterinary Medicine Commons, and the Virology Commons Das, Phani B., "THE GLYCOPROTEINS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS AND THEIR ROLE IN INFECTION AND IMMUNITY" (2010). Dissertations & Theses in Veterinary and Biomedical Science. 3. https://digitalcommons.unl.edu/vetscidiss/3 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE GLYCOPROTEINS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS AND THEIR ROLE IN INFECTION AND IMMUNITY by Phani Bhusan Das A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Doctor of Philosophy Major: Integrative Biomedical Sciences Under the Supervision of Professor Asit K. Pattnaik Lincoln, Nebraska August, 2010 THE GLYCOPROTEINS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS AND THEIR ROLE IN INFECTION AND IMMUNITY Phani Bhusan Das, Ph.D. University of Nebraska, 2010 Adviser: Asit K. Pattnaik The porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen of swine and is known to cause abortion and infertility in pregnant sows and respiratory distress in piglets.
    [Show full text]