Unexplained Increase in Serum Corticosteroid-B Globulin Levels In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types of Acute Phase Reactants and Their Importance in Vaccination (Review)
BIOMEDICAL REPORTS 12: 143-152, 2020 Types of acute phase reactants and their importance in vaccination (Review) RAFAAT H. KHALIL1 and NABIL AL-HUMADI2 1Department of Biology, College of Science and Technology, Florida Agricultural and Mechanical University, Tallahassee, FL 32307; 2Office of Vaccines, Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA Received May 10, 2019; Accepted November 25, 2019 DOI: 10.3892/br.2020.1276 Abstract. Vaccines are considered to be one of the most human and veterinary medicine. Proteins which are expressed cost-effective life-saving interventions in human history. in the acute phase are potential biomarkers for the diagnosis The body's inflammatory response to vaccines has both of inflammatory disease, for example, acute phase proteins desired effects (immune response), undesired effects [(acute (APPs) are indicators of successful organ transplantation phase reactions (APRs)] and trade‑offs. Trade‑offs are and can be used to predict the ameliorative effect of cancer more potent immune responses which may be potentially therapy (1,2). APPs are primarily synthesized in hepatocytes. difficult to separate from potent acute phase reactions. The acute phase response is a spontaneous reaction triggered Thus, studying acute phase proteins (APPs) during vaccina- by disrupted homeostasis resulting from environmental distur- tion may aid our understanding of APRs and homeostatic bances (3). Acute phase reactions (APRs) usually stabilize changes which can result from inflammatory responses. quickly, after recovering from a disruption to homeostasis Depending on the severity of the response in humans, these within a few days to weeks; however, APPs expression levels reactions can be classified as major, moderate or minor. -
Differential Expressions of Plasma Proteins in Systemic Lupus
Journal of Microbiology, Immunology and Infection (2019) 52, 816e826 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.e-jmii.com Original Article Differential expressions of plasma proteins in systemic lupus erythematosus patients identified by proteomic analysis Rashmi Madda a,1, Shih-Chang Lin a,b,c,1, Wei-Hsin Sun a,**, Shir-Ly Huang d,* a Department of Life Sciences, National Central University, Taiwan b Department of Medicine, College of Medicine, Fu-Jen Catholic University, Taiwan c Division of Rheumatology and Immunology, Cathay General Hospital, Taiwan d Institute of Microbiology and Immunology, National Yang-Ming University, Taiwan Received 27 September 2017; received in revised form 18 January 2018; accepted 21 February 2018 Available online 29 March 2018 KEYWORDS Abstract Introduction: Systemic lupus erythematosus (SLE) is a chronic and complex autoim- Systemic lupus mune disease with a wide range of clinical manifestations that affects multiple organs and tis- erythematosus; sues. Therefore the differential expression of proteins in the serum/plasma have potential Biomarkers; clinical applications when treating SLE. Plasma proteins; Methods: We have compared the plasma/serum protein expression patterns of nineteen active LC-ESI-MS/MS; SLE patients with those of twelve age-matched and gender-matched healthy controls by pro- Lupus: 2D-gel teomic analysis. To investigate the differentially expressed proteins among SLE and controls, a electrophoresis; 2-dimensional gel electrophoresis coupled with high-resolution liquid chromatography tandem Proteomic analysis mass spectrometry was performed. To further understand the molecular and biological func- tions of the identified proteins, PANTHER and Gene Ontology (GO) analyses were employed. Results: A total of 14 significantly expressed (p < 0.05, p < 0.01) proteins were identified, and of these nine were up-regulated and five down-regulated in the SLE patients. -
Haptoglobin and Its Related Protein, Zonulin—What Is Their Role in Spondyloarthropathy?
Journal of Clinical Medicine Review Haptoglobin and Its Related Protein, Zonulin—What Is Their Role in Spondyloarthropathy? Magdalena Chmieli ´nska 1,2,* , Marzena Olesi ´nska 2, Katarzyna Romanowska-Próchnicka 1,2 and Dariusz Szukiewicz 1 1 Department of Biophysics and Human Physiology, Medical University of Warsaw, Chałubi´nskiego5, 02-004 Warsaw, Poland; [email protected] (K.R.-P.); [email protected] (D.S.) 2 Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Sparta´nska1, 02-637 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondy- loarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA. Keywords: haptoglobin polymorphism; inflammation; pathogenesis; spondyloarthropathy; zonulin Citation: Chmieli´nska,M.; Olesi´nska, M.; Romanowska-Próchnicka, K.; Szukiewicz, D. Haptoglobin and Its 1. Introduction Related Protein, Zonulin—What Is Spondyloarthropathy is one of the most common rheumatic diseases whose prevalence Their Role in Spondyloarthropathy? J. varies between 0.4 and 1.9% in different countries [1]. The heterogeneity of SpA is the Clin. Med. 2021, 10, 1131. -
Ceruloplasmin
CERULOPLASMIN OSR6164 4 x 18 mL R1 4 x 5 mL R2 Intended Use System reagent for the quantitative determination of Ceruloplasmin (CER) in human serum on Beckman Coulter AU analyzers. Summary Ceruloplasmin is the primary copper containing protein in plasma. It is a late acute phase reactant synthesized by the liver. Acute phase reactant refers to proteins whose serum concentrations rise significantly during acute inflammation due to causes including surgery, myocardial infarction, infections and tumours. Ceruloplasmin’s main clinical importance is in the diagnosis of Wilson’s disease. Here plasma Ceruloplasmin concentration is reduced while dialyzable copper concentration is increased. Increased ceruloplasmin levels are particularly notable in diseases of the reticuloendothelial system such as Hodgkin’s disease as well as during pregnancy or the use of contraceptive pills. Low plasma levels of 1,2 ceruloplasmin are found in malnutrition, malabsorption, nephrosis and severe liver disease, particularly biliary cirrhosis. Methodology Immune complexes formed in solution scatter light in proportion to their size, shape and concentration. Turbidimeters measure the reduction of incident light due to reflection, absorption, or scatter. In the procedure, the measurement of the decrease in light transmitted (increase in absorbance) through particles suspended in solution as a result of complexes formed during the antigen-antibody reaction, is the basis of this assay. System Information For AU400/400e/480, AU600/640/640e/680 and AU2700/5400 Beckman Coulter Analyzers. Reagents Final concentration of reactive ingredients: Solution of Polymers in Phosphate Buffered Saline (pH 7.4 – 7.6) Rabbit anti-human Ceruloplasmin antiserum Also contains preservatives. Precautions 1. For in vitro diagnostic use. -
Downloaded from Bioscientifica.Com at 09/25/2021 07:25:24AM Via Free Access 812 M Andreassen and Others EUROPEAN JOURNAL of ENDOCRINOLOGY (2012) 166
European Journal of Endocrinology (2012) 166 811–819 ISSN 0804-4643 CLINICAL STUDY GH activity and markers of inflammation: a crossover study in healthy volunteers treated with GH and a GH receptor antagonist Mikkel Andreassen1, Jan Frystyk2,3, Jens Faber1,4 and Lars Østergaard Kristensen1 1Endocrine Unit, Laboratory of Endocrinology 54o4, Department of Internal Medicine O, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark, 2Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark and 3Medical Research Laboratories, Faculty of Health Sciences, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark and 4Faculty of Health Science, Copenhagen University, Copenhagen, Denmark (Correspondence should be addressed to M Andreassen; Email: [email protected]) Abstract Introduction: The GH/IGF1 axis may modulate inflammatory processes. However, the relationship seems complicated as both pro- and anti-inflammatory effects have been demonstrated. Methods/design: Twelve healthy volunteers (mean age 36, range 27–49 years) were treated in random order with increasing doses of GH for 3 weeks (first week 0.01 mg/kg per day, second week 0.02 mg/kg per day, and third week 0.03 mg/kg per day) or a GH receptor antagonist (pegvisomant; first week 10 mg/day and last two weeks 15 mg/day), separated by 8 weeks of washout. Circulating levels of the pro-inflammatory cytokines tumor necrosis factor a (TNFa (TNFA)), interleukin 6 (IL6), and IL1b (IL1B) and the acute phase proteins (APPs) C-reactive protein (CRP), haptoglobin, orosomucoid, YKL40 (CHI3L1), and fibrinogen were measured. Results: During GH treatment, IGF1 (median 131 (Inter-quartile range (IQR) 112–166) vs 390 (322– 524) mg/l, PZ0.002) increased together with TNFa (0.87 (0.74–1.48) vs 1.27 (0.80–1.69) ng/l, PZ0.003), IL6 (1.00 (0.83–1.55) vs 1.35 (0.80–4.28) ng/l, PZ0.045), and fibrinogen (9.2 (8.8–9.6) vs 11.1 (9.4–12.4) mM, PZ0.002). -
Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients
Antioxidants 2015, 4, 153-169; doi:10.3390/antiox4010153 OPEN ACCESS antioxidants ISSN 2076-3921 www.mdpi.com/journal/antioxidants Article Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients Michael A. Dubick 1,*, Johnny L. Barr 1, Carl L. Keen 2 and James L. Atkins 3 1 U.S. Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA; E-Mail: [email protected] 2 Departments of Nutrition and Internal Medicine, University of California, Davis, CA 95616, USA; E-Mail: [email protected] 3 Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-210-539-3680. Academic Editor: Nikolai V. Gorbunov Received: 26 November 2014 / Accepted: 28 February 2015 / Published: 6 March 2015 Abstract: Objective: Normal iron handling appears to be disrupted in critically ill patients leading to hypoferremia that may contribute to systemic inflammation. Ceruloplasmin (Cp), an acute phase reactant protein that can convert ferrous iron to its less reactive ferric form facilitating binding to ferritin, has ferroxidase activity that is important to iron handling. Genetic absence of Cp decreases iron export resulting in iron accumulation in many organs. The objective of this study was to characterize iron metabolism and Cp activity in burn and non-burn trauma patients to determine if changes in Cp activity are a potential contributor to the observed hypoferremia. Material and Methods: Under Brooke Army Medical Center Institutional Review Board approved protocols, serum or plasma was collected from burn and non-burn trauma patients on admission to the ICU and at times up to 14 days and measured for indices of iron status, Cp protein and oxidase activity and cytokines. -
Translational Control of Ceruloplasmin Gene Expression: Beyond the IRE
MAZUMDER ET AL. Biol Res 39, 2006, 59-66 59 Biol Res 39: 59-66, 2006 BR Translational control of ceruloplasmin gene expression: Beyond the IRE BARSANJIT MAZUMDER1, PRABHA SAMPATH2 and PAUL L. FOX3 1Department of Biology, Cleveland State University, Cleveland, OH, 2Department of Pathology, University of Washington, Seattle, WA, USA, and 3Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA ABSTRACT Translational control is a common regulatory mechanism for the expression of iron-related proteins. For example, three enzymes involved in erythrocyte development are regulated by three different control mechanisms: globin synthesis is modulated by heme-regulated translational inhibitor; erythroid 5- aminolevulinate synthase translation is inhibited by binding of the iron regulatory protein to the iron response element in the 5’-untranslated region (UTR); and 15-lipoxygenase is regulated by specific proteins binding to the 3’-UTR. Ceruloplasmin (Cp) is a multi-functional, copper protein made primarily by the liver and by activated macrophages. Cp has important roles in iron homeostasis and in inflammation. Its role in iron metabolism was originally proposed because of its ferroxidase activity and because of its ability to stimulate iron loading into apo-transferrin and iron efflux from liver. We have shown that Cp mRNA is induced by interferon (IFN)-γ in U937 monocytic cells, but synthesis of Cp protein is halted by translational silencing. The silencing mechanism requires binding of a cytosolic inhibitor complex, IFN-Gamma-Activated Inhibitor of Translation (GAIT), to a specific GAIT element in the Cp 3’-UTR. Here, we describe our studies that define and characterize the GAIT element and elucidate the specific trans-acting proteins that bind the GAIT element. -
Haptoglobin 9D91-20 30-3966/R4
HAPTOGLOBIN 9D91-20 30-3966/R4 HAPTOGLOBIN This package insert contains information to run the Haptoglobin assay on the ARCHITECT c Systems™ and the AEROSET System. NOTE: Changes Highlighted NOTE: This package insert must be read carefully prior to product use. Package insert instructions must be followed accordingly. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert. Customer Support United States: 1-877-4ABBOTT Canada: 1-800-387-8378 (English speaking customers) 1-800-465-2675 (French speaking customers) International: Call your local Abbott representative Symbols in Product Labeling Calibrators 1 through 5 Catalog number/List number Concentration Serial number Authorized Representative in the Consult instructions for use European Community Ingredients Manufacturer In vitro diagnostic medical device Temperature limitation Batch code/Lot number Use by/Expiration date Reagent 1 Reagent 2 ABBOTT LABORATORIES ABBOTT Abbott Park, IL 60064, USA Max-Planck-Ring 2 65205 Wiesbaden Germany +49-6122-580 May 2007 ©2004, 2007 Abbott Laboratories 1 NAME REAGENT HANDLING AND STORAGE HAPTOGLOBIN Reagent Handling Remove air bubbles, if present in the reagent cartridge, with a new INTENDED USE applicator stick. Alternatively, allow the reagent to sit at the appropriate The Haptoglobin assay is used for the quantitation of haptoglobin in storage temperature to allow the bubbles to dissipate. To minimize human serum or plasma. volume depletion, do not use a transfer pipette to remove the bubbles. CAUTION: Reagent bubbles may interfere with proper detection of SUMMARY AND EXPLANATION OF TEST reagent level in the cartridge, causing insufficient reagent aspiration Haptoglobin is a protein synthesized in the liver that binds with the which could impact results. -
BAFF Expression Is Increased in Patients
g in Geno nin m i ic M s ta & a P Eilertsen, J Data Mining in Genom Proteomics 2012, 3:1 D r f o Journal of o t e l DOI: 10.4172/2153-0602.1000113 o a m n r i c u s o J ISSN: 2153-0602 Data Mining in Genomics & Proteomics Research Article Open Access BAFF Expression is Increased in Patients with Lupus Nephritis and Associated with Antinucleosome Antibodies, C1 Inhibitor, Α-1-Acid- Glycoprotein and Endothelial Activation Markers G. Ø. Eilertsen¹*, M. Van Ghelue² and J.C. Nossent¹ ¹Bone and Joint research group, Department of Health Science, Medical School, University of Tromsø, Norway ²Medical Genetics Department, University Hospital North Norway, Tromsø, Norway Abstract Objectives: B cell activating factor (BAFF) inhibitor therapy has recently been approved for non-renal Systemic Lupus Erythematosus (SLE). While BAFF plays a role in experimental lupus nephritis (LN), its role human LN is not well studied. Methods: Case control study in 102 SLE patients, 30 with LN (+LN) and 72 without LN (-LN) and 31 healthy controls. We analysed BAFF mRNA expression in PBMCs (BAFF-RQ) and serum BAFF (s-BAFF) levels and investigated their relation with clinical, histological- and additional acute phase proteins. Results: s-BAFF and BAFF-RQ were increased in +LN patients compared to controls, but their expression did not correlate with ISN/RPS class, Activity- or Chronicity index on biopsy. s-BAFF correlated with levels of anti-nucleosome antibodies, C1 inhibitor and α-1-acid-glycoprotein (AGP), while BAFF-RQ correlated inversely with Factor VIII. -
Urinary Proteomics for the Early Diagnosis of Diabetic Nephropathy in Taiwanese Patients Authors
Urinary Proteomics for the Early Diagnosis of Diabetic Nephropathy in Taiwanese Patients Authors: Wen-Ling Liao1,2, Chiz-Tzung Chang3,4, Ching-Chu Chen5,6, Wen-Jane Lee7,8, Shih-Yi Lin3,4, Hsin-Yi Liao9, Chia-Ming Wu10, Ya-Wen Chang10, Chao-Jung Chen1,9,+,*, Fuu-Jen Tsai6,10,11,+,* 1 Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan 2 Center for Personalized Medicine, China Medical University Hospital, Taichung, 404, Taiwan 3 Division of Nephrology and Kidney Institute, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan 4 Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, 404, Taiwan 5 Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, 404, Taiwan 6 School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan 7 Department of Medical Research, Taichung Veterans General Hospital, Taichung, 404, Taiwan 8 Department of Social Work, Tunghai University, Taichung, 404, Taiwan 9 Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan 10 Human Genetic Center, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan 11 Department of Health and Nutrition Biotechnology, Asia University, Taichung, 404, Taiwan + Fuu-Jen Tsai and Chao-Jung Chen contributed equally to this work. Correspondence: Fuu-Jen Tsai, MD, PhD and Chao-Jung Chen, PhD FJ Tsai: Genetic Center, China Medical University Hospital, No.2 Yuh-Der Road, 404 Taichung, Taiwan; Telephone: 886-4-22062121 Ext. 2041; Fax: 886-4-22033295; E-mail: [email protected] CJ Chen: Graduate Institute of Integrated Medicine, China Medical University, No.91, Hsueh-Shih Road, 404, Taichung, Taiwan; Telephone: 886-4-22053366 Ext. -
Expression of Haptoglobin-Related Protein and Its Potential Role As a Tumor Antigen (Neoplasia/Breast Cancer/Acute-Phase Proteins) FRANCIS P
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 1188-1192, February 1989 Biochemistry Expression of haptoglobin-related protein and its potential role as a tumor antigen (neoplasia/breast cancer/acute-phase proteins) FRANCIS P. KUHAJDA*, ASOKA I. KATUMULUWA, AND GARY R. PASTERNACK Department of Pathology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21205 Communicated by M. Daniel Lane, November 14, 1988 (receivedfor review August 3, 1988) ABSTRACT These studies describe the detection of a pensity for tumor invasion and early metastasis. Clinically, haptoglobin species, its characterization as the HPR gene these properties manifested as a dramatically worsened product, and its association with both pregnancy and neopla- prognosis (7-9). In Western blots (immunoblots) of fractions sia. Previous work showed that the early recurrence of human of sera from pregnant women, this antiserum detected a set breast cancer correlated with immunohistochemical staining of proteins whose properties were inconsistent with those of with a commercial antiserum ostensibly directed against preg- PAPP-A, a homotetramer composed of 200-kDa polypep- nancy-associated plasma protein A (PAPP-A). Use of this tides. The studies below describe the purification of the antiserum to guide purification ofthe putative antigen led to the unexpectedly immunoreactive protein species from the present identification and purification of a strongly immuno- plasma ofpregnant women, its identification as the HPR gene reactive protein species distinct from PAPP-A that was present product, and its relationship to the clinically important in the plasma of pregnant women at term. Unlike PAPP-A, a antigen expressed in human breast carcinoma. -
Elevated Alpha-1 Antitrypsin Is a Major Component of Glyca-Associated Risk for Future Morbidity and Mortality
bioRxiv preprint doi: https://doi.org/10.1101/309138; this version posted April 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Elevated alpha-1 antitrypsin is a major component of GlycA-associated risk for future morbidity and mortality Scott C. Ritchie1,2,3,4*, Johannes Kettunen5,6,7, Marta Brozynska1,2,3,4, Artika P. Nath1,8, Aki S. Havulinna6,9, Satu Männisto6, Markus Perola6,9, Veikko Salomaa6, Mika Ala-Korpela5,7,10,11,12,13, Gad Abraham1,2,3,4, Peter Würtz14,15, Michael Inouye1,2,3,4* 1Systems Genomics Lab, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia 2Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom 3Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia 4School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia 5Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu 90014, Finland 6National Institute for Health and Welfare, Helsinki 00271, Finland 7NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland 8Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia 9Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland 10Population Health Science,