Comet Hale-Bopp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
National Observatories
Sidney C Wolff NOAO/DIR NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Cerro Tololo Inter-American Observatory Kitt Peak National Observatory National Solar Observatory La Serena, Chile Tucson, Arizona 85726 Sunspot, New Mexico 88349 ANNUAL REPORT October 1996 - September 1997 October 30,1997 TABLE OF CONTENTS L INTRODUCTION IL AURA BOARD m. SCffiNTDJIC PROGRAM A. Cerro Tololo Inter-American Observatory (CTIO) 1. The Search for High Z Supernovae 2. Nearby Stars and Planets 2 B. Kitt Peak National Observatory (KPNO) 3 1. The History of Star Formation in Distant Galaxies 3 2. Oxygen Abundance and the Age of the Universe 4 3. The Age of Elliptical Galaxies - Is There Enough Time? 5 C. National Solar Observatory (NSO) 5 1. Results from GONG 5 2. High-Resolution Images of Solar Magnetic Fields 6 3. Active Optics Control Loop Closed at the Sac Peak Vacuum Tower Telescope 7 IV. DIVISION OPERATIONS 7 A. CTIO 7 Telescope Upgrades and Instrumentation 7 1. 4-m Upgrades 8 2. Major Instrumentation Efforts 9 3. SOAR 4-m Telescope Project 9 4. CCD Implementation and ARCON Controller Development 10 5. Existing Small General-User Telescopes on Cerro Tololo 10 6. New "Tenant" Installations and Upgrades 10 7. Other 11 B. KPNO 12 1. Image Quality Improvements 12 2. WTYN Queue Observing Experiment 12 3. WTYN 13 4. KPNO Instrumentation Improvements 14 5. Burrell-Schmidt 14 C. NSO 15 1. Kitt Peak 15 2. Sacramento Peak 17 3. Digital Library Development 21 D. USGP/ScOpe 21 E. NOAO Instrumentation 25 1. CCD Mosaic Imager 26 2. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Nrao Printersprd2
NRAO National Radio Astronomy Observatory National Radio Astronomy Observatory www.nrao.edu The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities Inc. Design: Photoworks Creative Group, Charlottesville,Virginia The National Radio Astronomy Observatory (NRAO) enables cutting-edge research in the study of the Universe using radio astronomy techniques, attracts and trains future scientists and engineers, and stimulates public interest in science. The radio emission (orange) detected by the NRAO Very Large Array (VLA) is synchrotron radiation emitted by electrons moving at nearly the speed of light in a cosmic magnetic field. These electrons originate in enormous energy outflows from jets fueled by supermassive black holes at the centers of galaxies. Credit: NRAO/AUI, J. M. Uson (cover image) NRAO VLA located in New Mexico. The NRAO seeks to bring the excitement of modern astronomy to persons of every age.The Green Bank Science Center in West Virginia, and the Very Large Array Visitor Center in New Mexico offer numerous opportunities to explore astronomy through hands-on exhibits, tours, informative videos, and shops. Special activities and programs are available for school and youth groups of all ages. Credit: NRAO/AUI Want to Learn More? The Green Bank Science Center is located adjacent to the Robert C. Byrd Green Bank Telescope, 300 miles west of Washington D.C. in Pocahontas County, West Virginia. The VLA Visitor Center is located at the Very Large Array, south of Albuquerque, New Mexico, and 50 miles west of Socorro, New Mexico, on Highway 60. For detailed maps, operations hours, program opportunities and times, and other information please visit the NRAO on-line at www.nrao.edu/epo, or contact us by phone or email. -
OBSERVING BASICS by GUY MACKIE
OBSERVING BASICS by GUY MACKIE Observing Reports The colorful and detailed photographs we see of celestial objects are not at all like the ubiquitous "fuzzy blobs" we see at the eyepiece. Nevertheless, you are freezing your buns off and loosing much needed sleep for work, the next day so why not make a description of your observations that will make the hunt worthwhile. Here are some suggestions to fill the empty spaces in your logbook and to imprint the observing experience more deeply in your memory. The Basics Your website www.m51.ca has a downloadable log sheet template that is just super, but you can also make up one for yourself or customize the website version to your own needs. The main things to start your report should be the circumstances under which you observed: Observing Location Time (of observing session and of the observation of each object) Optics (type of instrument, eyepiece, filters, power of magnification) Transparency (page 56 of the Observers Handbook) Seeing (for me this is a subjective rating of the atmospheric stability based on Planet features and double star observations) It is good to know the field of view (FOV) of each of your eyepieces in minutes of degree, then you can estimate the approximate size of the object. The sketchpad I use has the FOV for every eyepiece I use taped to the back, a handy reference. To calculate your field of view there are websites that will punch out the both the magnification and the FOV for most eyepieces. You can do it yourself: With any motor drives turned off, place a star near the celestial equator just outside the field of view in the eyepiece so that it will drift across the middle of the field of view. -
Sky & Telescope
Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments. -
Student Programs 2015-2016 Impact Data Fall 2016 RPSEC Student Programs for K-12 Students Had 32,502 in This Issue: Program Visits During the 2015-2016 School Year
@ USC Aiken 471 University Parkway . Aiken, SC 29801 . 803-641-3313 . http://rpsec.usca.edu/ Student Programs 2015-2016 Impact Data Fall 2016 RPSEC Student Programs for K-12 students had 32,502 In This Issue: program visits during the 2015-2016 school year. Of that total, 26,800 were K-12 students from 73 schools Student Programs encompassing 15 public school districts in South Car- Pages 1-3 olina and Georgia, as well as numerous private and home school groups. In addition, 604 teachers and STEP, Grants 5,098 adult chaperones accompanied the students Page 4-5 during this year’s programs. This year’s most popular programs included Circuit City (1,871 student visits), Adopt an Animal Magnets and Motions (1,724 student visits), Animals Page 6 with Backbones (1,679 student visits), Under the Sea Camp Invention (1,343 student visits), Push Me, Pull Me (1,212 student Page 7 visits), and In My Backyard (1,177 student visits). Future City Page 8 DuPont Planetarium K-12 Student Programs 2016-2017 Page 9 The deadline has passed for reservation requests (SC)2 and for the 2016-2017 school year. Once again, we Graduate Program received many more requests than we will be Page 10 able to serve, and our schedule is now full. We Galactic Guardians are unable to schedule additional programs at Page 11 this time, but will be happy to place your request on a waiting list in the event of a cancellation. To Nuclear Science download a reservation request form, please go Week Page 12-13 to: http://rpsec.usca.edu/student/. -
Astrophotography a Beginner’S Guide
Astrophotography A Beginner’s Guide By James Seaman Copyright © James Seaman 2018 Contents Astrophotography ................................................................................................................................... 5 Equipment ........................................................................................................................................... 6 DSLR Cameras ..................................................................................................................................... 7 Sensors ............................................................................................................................................ 7 Focal Length .................................................................................................................................... 8 Exposure .......................................................................................................................................... 9 Aperture ........................................................................................................................................ 10 ISO ................................................................................................................................................. 11 White Balance ............................................................................................................................... 12 File Formats .................................................................................................................................. -
MESSIER 15 RA(2000) : 21H 29M 58S DEC(2000): +12° 10'
MESSIER 15 RA(2000) : 21h 29m 58s DEC(2000): +12° 10’ 01” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Pegasus BEST VIEW: Late October DISCOVERY: Jean-Dominique Maraldi, 1746 DISTANCE: 33,600 ly DIAMETER: 175 ly APPARENT MAGNITUDE: +6.2 APPARENT DIMENSIONS: 18’ FOV:Starry 1.00Night FOV: 60.00 Vulpecula Sagitta Pegasus NGC 7009 (THE SATURN NEBULA) Delphinus NGC 7009 RA(2000) : 21h 04m 10.8s DEC(2000): -11° 21’ 48.6” Equuleus Pisces Aquila NGC 7009 FOV: 5.00 Aquarius Telrad Capricornus Sagittarius Cetus Piscis Austrinus NGC 7009 Microscopium BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Aquarius Sculptor BEST VIEW: Early November DISCOVERY: William Herschel, 1782 DISTANCE: 2000 - 4000 ly DIAMETER: 0.4 - 0.8 ly Grus APPARENT MAGNITUDE: +8.0 APPARENT DIMENSIONS: 41” x 35” Telescopium Telrad Indus NGC 7662 (THE BLUE SNOWBALL) RA(2000) : 23h 25m 53.6s DEC(2000): +42° 32’ 06” BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Andromeda BEST VIEW: Late November DISCOVERY: William Herschel, 1784 DISTANCE: 1800 – 6400 ly DIAMETER: 0.3 – 1.1 ly APPARENT MAGNITUDE: +8.6 APPARENT DIMENSIONS: 37” MESSIER 52 RA(2000) : 23h 24m 48s DEC(2000): +61° 35’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Cassiopeia BEST VIEW: December DISCOVERY: Charles Messier, 1774 DISTANCE: ~5000 ly DIAMETER: 19 ly APPARENT MAGNITUDE: +7.3 APPARENT DIMENSIONS: 13’ AGE: 50 million years FOV:Starry 1.00Night FOV: 60.00 Auriga Cepheus Andromeda MESSIER 31 (THE ANDROMEDA GALAXY) M 31 RA(2000) : 00h 42m 44.3Cassiopeias DEC(2000): +41° 16’ 07.5” Perseus Lacerta AndromedaM 31 FOV: 5.00 Telrad Triangulum Taurus Orion Aries Andromeda M 31 Pegasus Pisces BASIC INFORMATION OBJECT TYPE: Galaxy CONSTELLATION: Andromeda Telrad BEST VIEW: December DISCOVERY: Abd al-Rahman al-Sufi, 964 Eridanus CetusDISTANCE: 2.5 million ly DIAMETER: ~250,000 ly* APPARENT MAGNITUDE: +3.4 APPARENT DIMENSIONS: 178’ x 63’ (3° x 1°) *This value represents the total diameter of the disk, based on multi-wavelength measurements. -
RPSEC Spectrum Spring 2012
@ USC Aiken 471 University Parkway . Aiken, SC 29801 . 803-641-3313 . http://rpsec.usca.edu/ Student Programs The Ruth Patrick Science Education Center’s K-12 Student Pro- grams offerings for 2012-2013 will be posted online on April 20, 2012. Teachers will be able to select from 52 different hands-on, inquiry based classroom programs aligned to state Spring 2012 standards. We recommend that teachers combine 2 or 3 In This Issue: programs in one visit. Student Programs Teachers may download program descriptions, standards Pages 1-2 correlations, pre-and post visit activities, reservation re- Future City quest forms, and more at http://rpsec.usca.edu/student/. Page 3 Reservation requests may also be submitted online for a limited time. Print brochures and request forms will be Family Earth and Sky mailed only to those teachers who have reserved pro- Night grams in the last three years. Request forms may be Page 4 mailed to the RPSEC or faxed to (803) 641-3615. Due to budget cuts, the number of programs from which to DuPont Planetarium select might be reduced next year. We are continuing to and Summer Group look for grants and funding sources. Programs Page 5 Teachers may request up to 4 programs for the school year but, pending funding, this number may be reduced– so Camp Invention please prioritize your requests. Last year we received many Page 6 more requests than we were able to serve. We will schedule Camp Success teachers’ requests, subject to availability, in the order speci- Page 7 fied on the reservation request form. -
2007 the Meaning of Life
The Meaning Of Life This observing list tells a story of birth, life and death within the Universe. Each entry has the essential facts about the object in tabular form and then a paragraph or two explaining why the object is important astrophysi- cally and where is sits on the timeline of the Universe . To get the most out of the list, be sure to read the textual descriptions and physical characteristics as you observe each object. In order to get your “Meaning of Life” observing pin, observe 20 of the 24 objects during the 2007 Eldorado Star Party. The objects are not necessarily listed in the best observing order but a summary sheet at the end lists them in order of setting time. Turn your completed sheet into Bill Tschumy sometime during the event to claim your pin. If you miss me at ESP you can also mail the completed list to the address given at the end of the list. ****Birth ****************************************************************************** NGC 6618 , M 17, Cr 377, Swan Nebula Constellation Type RA Dec Magnitude Apparent Size Observed Sgr DN, OC 18h 20.8m -16º 11! 7.5 11!x11! Age Distance Gal Lon Gal Lat Luminosity Actual Size 1 Myr 6,800 ly 15.1º -0.8º 3,757 Suns 22x22 ly The Swan Nebula houses one of the youngest open clusters known in the Galaxy. At the tender age of 1 million years, the cluster is still embedded in the irregularly shaped nebulosity from which it arose. Although the cluster appears to have around 35 stars, most are not true cluster members.