Direct Air Capture
Total Page:16
File Type:pdf, Size:1020Kb
DIRECT AIR CAPTURE Metin Bulut, VITO Training Event - Carbon capture, utilisation and storage (CCUS) 19 February 2020, Avans Hogeschool, Breda, Netherlands 19/02/2020 ©VITO – Not for distribution 1 DIRECT AIR CAPTURE VS. POINT SOURCE CARBON CAPTURE % CO in Current cost (EUR/ton) Fuel Technique 2 Direct Air Capture treated off gas * Pure CO2 at 110 bar cyclic ad/desorption on solid adsorbent post-combustion 13 – 15 40 oxy-fuel 80 – 98 42 (~ pure O2 cost) pre-combustion 15 – 50** 37 post-combustion 2 – 4 56 oxy-fuel 80 – 98 53 (~ pure O2 cost) 0.04 % / 400 ppm CO2 >>200 EUR/ton CO2 pre-combustion - 49 * Leung D.Y.C. et al. Renewable and Sustainable Energy Reviews. Vol. 39. (2014) pp. 426-443 + including 1.18 EUR/dollar exchange rate in 2014 **https://www.energy.gov/fe/science-innovation/carbon-capture-and-storage-research/carbon-capture-rd/pre-combustion-carbon No purification “Even though CO2 concentration in the atmosphere is about 250 - 300 CO2 compression: for times less than concentrated sources, the theoretical energy demand buffer/storage, by DAC is only 2-4 times higher.”* Transport and Utilization “The ratio of real work demand for DAC to concentrated sources can be higher, but the real work demand of DAC can significantly decrease at higher capture rates.”** 19/02/2020 *Goeppert, A., Czaun, M., Surya Prakash, G., Olah, G., 2012. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ. Sci. 5 (7), 7833. **Wilcox, J., Psarras, C.P., Liguori, S., 2017. Assessment of reasonable opportunities for direct air capture. Environ. Res. Lett. 12, 065001. ©VITO – Not for distribution 2 DIRECT AIR CAPTURE’S HISTORY capture CO2 CO2 ↔ Bio-Energy with Carbon Capture Storage . Huge surface area for biomass cultivation bio-energy . High energy and water consumption for process . Competition with food application and biofuels . Uncertainty of economic viability storage 1930’s Regeneratable Carbon Dioxide Life support Removal 1965, Non- regeneratable Cryogenic air separation 19/02/2020 Keith, D., Ha-Duong, M., Stolaroff, J., 2006. Climate strategy with CO2 capture from the air. Clim. Change 74 (1-3), 17-45. House, K., Baclig, A., Ranjan, M., van Nierop, E., Wilcox, J., Herzog, H., 2011. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. Unit. States Am. 108 (51), 20428-20433. ©VITO – Not for distribution 3 Absorption: ~strong bases CHEMISTRY BEHIND DIRECT AIR CAPTURE KOH + CO2 → K2CO3 + H2O strong binding 400 ppm CO2 1000’s m² 0.79 g/m³ surface per g sorbent m³ air/h kg CO2/h 1 000 0.8 Physisorption R = sorbent surface Adsorption: 5 000 4.0 weak (van der Waals forces) ~high surface area low Tdesorption 10 000 7.9 H H H H H H N N N 20 000 15.8 Chemisorption strong 25 000 19.8 high T desorption Lewis bases in general additives: K2CO3 + CO2 + H2O → 2KHCO3 19/02/2020 ©VITO – Not for distribution 4 TYPE OF DIRECT AIR CAPTURE TECHNOLOGY High Temperature Low Temperature Low Temperature aqueous solution solid sorbent (TSA) solid sorbent (MSA) TVSA (vacuum-assisted) Also electrostatic absorption Lowest T-range: possibilities for use of waste heat Ion-exchange sorbent material 19/02/2020 ©VITO – Not for distribution 5 Moisture swing adsorption DIRECT AIR CAPTURE PROCESS STEPS 1)Thin resin sheets are exposed to air and moved to a closed system after saturation 2)Air is removed and moisture added. The resin releases CO2 by contacting with water. CO2 is collected, dried and can be compressed if needed. low-grade 3)After gas is removed, the system is heated up to 45 °C to dry the sheets MSA Low Temperature (g) (l) CO solid sorbent contactor CO2 2 active (l) CaCO3 (s) (g) CO2 CO2 High Temperature (aqueous) contactor pellet aqueous solution K2CO3 reactor CaO (s) calciner non- (aqueous) active slaker KOH Ca(OH)2 active liquid O2 Natural gas high-grade 19/02/2020 ©VITO – Not for distribution 6 Fuel: natural gas Oxy-fuel combustion HIGH TEMPERATURE AQUEOUS SOLUTION Air separation unit heat 19/02/2020 Keith, D.W., Holmes, G., St Angelo, D., Heidel, K., 15 August 2018. A process for capturing CO2 from the atmosphere. Joule 2 (8), 1573e1594 ©VITO – Not for distribution 7 HIGH TEMPERATURE AQUEOUS SOLUTION Parameter Caustic component KOH kWh (air separation unit elec 289 for oxy-fuel + compression) kWhelec (fans) 77 kWhheat (natural gas) 1458 Poutlet (bar) 150 Purity (%) 97.1 If fully electrical: kWhelec 1535 kWh 19/02/2020 Keith, D.W., Holmes, G., St Angelo, D., Heidel, K., 15 August 2018. A process for capturing CO2 from the atmosphere. Joule 2 (8), 1573e1594 ©VITO – Not for distribution 8 LOW TEMPERATURE SOLID SORBENT Parameter * ** *** sorbent amine amino-polymer K2CO3 Full cycle 4 – 6 h <30 min - Desorption T (°C) 100 85 – 95* 80 – 100 Desorption pressure 0.2 0.5 – 0.9 - kWhelec/t (fans + control) 200 – 300 150 – 260 694 kWhheat/t 1500 - 2000 1170 – 1410 2083 Heat source waste heat steam waste heat** Cooling T (°C) 15 ambient ambient Cooling source air/water water evap air flow Purity (%) 99.9 >98.5 >99 * regeneration occurs in less than 100 s. To achieve such a fast process, saturated steam at sub-atmospheric pressure is used as a direct heat transfer fluid and as a sweep gas. 50% of the regeneration heat is recovered ** moisture-aided * Climeworks, 2018b. Capturing CO2 from Air. Zurich, Switzerland. Available at: http://www.climeworks.com/co2-removal/ Vogel, A.B., 2017. CO2 e the Raw Material that Comes from AIR. Swiss Federal Office of Energy. Available at: http://www.bfe.admin.ch/cleantech/05761/05763/05782/index.html?lang¼en&dossier_id¼05135 19/02/2020 ** Ping, E., Sakwa-Novak, M., Eisenberger, P., 2018b. Lowering the cost of direct air capture: pilot to commercial deployment. In: Presentation at International Conference on Negative CO2 Emissions, Gothenburg, May 22-24. *** Roestenberg, T., 2015. Design Study Report - ANTECY Solar Fuels Development. Antecy. Hoevelaken, the Netherlands. Available at: http://www.antecy.com/wpcontent/uploads/2016/05/Design-study-report.pdf ©VITO – Not for distribution Antecy, 2018. About us. Hoevelaken, Netherlands. Available at: http://www.antecy.com/about-us/ 9 LOW TEMPERATURE SOLID SORBENT: ENERGY SPECS 19/02/2020 ©VITO – Not for distribution 10 LOW TEMPERATURE SOLID SORBENT: CYCLE OPTIMIZATION 5 2 adsorption (mmol CO2/g vs. hours) cycles (de-/adsorption time 0.4) cumulative CO2 capture Parameters Productivity and capture cost CAPEX 1.5 M€ productivity 591 t CO /y OPEX investment sorbent 1 2 depreciation 10 years CO cost 308 €/t CO 2 2 YCC heat 2 utilities MWh/ton CO2 electricity 0.35 productivity 1697 t CO /y sorbent 2 2 heat 20 CO2 cost @ same unit cost €/MWh 142 €/t CO OPEX electricity 40 production rate 2 YCC 19/02/2020 ©VITO – Not for distribution 11 ECONOMICS * ** *** **** Capacity (t CO2/year) 1 000 000 Large-scale 300 Large-scale 3600 360 000 - Large-scale * CAPEX (€/t CO2 year) 625 - - - 1220 730 - - OPEX (%) 3.7 - - - - - - - Lifetime (years) 25 - 20 - 25 25 - - kWhelec/t 366 1500 200 – 300 - 694 694 150 – 260 - €/MWhelec 27 – 54 - - - - - - - kWhheat/t 1460 0 1500 – 2000 - 2083 2083 1170 – 1410 - Cost €/t CO2 139 75 – 113 200 - 600 75 203 135 < 113 11 – 38 Based on free waste Based on free waste Nth plant, WACC 7% - - - - - Cond. heat heat * Keith, D.W., Holmes, G., St Angelo, D., Heidel, K., 15 August 2018. A process for capturing CO2 from the atmosphere. Joule 2 (8), 1573-1594 ** Climeworks, 2018b. Capturing CO2 from Air. Zurich, Switzerland. Available at: http://www.climeworks.com/co2-removal/ Vogel, A.B., 2017. CO2 e the Raw Material that Comes from AIR. Swiss Federal Office of Energy. Available at: http://www.bfe.admin.ch/cleantech/05761/05763/05782/index.html?lang¼en&dossier_id¼05135 19/02/2020 *** Ping, E., Sakwa-Novak, M., Eisenberger, P., 2018b. Lowering the cost of direct air capture: pilot to commercial deployment. In: Presentation at International Conference on Negative CO2 Emissions, Gothenburg, May 22-24. **** Roestenberg, T., 2015. Design Study Report - ANTECY Solar Fuels Development. Antecy. Hoevelaken, the Netherlands. Available at: http://www.antecy.com/wpcontent/uploads/2016/05/Design-study-report.pdf ©VITO – Not for distribution Antecy, 2018. About us. Hoevelaken, Netherlands. Available at: http://www.antecy.com/about-us/ 12 UTILITIES + DOWNSTREAM PROCESS buffer 20 bar CO2 gas 73.8 bar CO2 liquid Technology t H2O/t CO2 132 kWhel/t CO2 * CO 150 bar HT aqueous solution consumes 0 – 50 2 CO2 ** New Carbon Engineering consumes 4.7 Direct Air 104 kWhel/t CO2 Capture 60 % η Climeworks captures 0.8 – 2 138 bar CO2 Hydrocell captures 1.9 *@T , RH , and [OH-] 96 - 103 kWhel/t CO2 air air Point source 120 bar ** @Tambient and RH 64 % Carbon Capture CO2 purification Keith, D., Ha-Duong, M., Stolaroff, J., 2006. Climate strategy with CO2 capture from the air. Clim. Change 74 (1-3), 17-45 Stolaroff, J., Keith, D., Lowry, G., 2008. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42 (8), 2728-2735 19/02/2020 Smith, P., Davis, S.J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R.B., Cowie, A., Kriegler, E., et al., 2016. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42-50 Zeman, F., 2007. Energy and material balance of CO2 capture from ambient air. Environ. Sci. Technol. 41 (21), 7558-7563 ©VITO – Not for distribution Keith, D.W., Holmes, G., St Angelo, D., Heidel, K., 15 August 2018. A process for capturing CO2 from the atmosphere.