Proceedings of the 12Th USENIX Security Symposium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security in Ordinary Operating Systems
39 C H A P T E R 4 Security in Ordinary Operating Systems In considering the requirements of a secure operating system,it is worth considering how far ordinary operating systems are from achieving these requirements. In this chapter, we examine the UNIX and Windows operating systems and show why they are fundamentally not secure operating systems. We first examine the history these systems, briefly describe their protection systems, then we show, using the requirements of a secure operating system defined in Chapter 2, why ordinary operating systems are inherently insecure. Finally, we examine common vulnerabilities in these systems to show the need for secure operating systems and the types of threats that they will have to overcome. 4.1 SYSTEM HISTORIES 4.1.1 UNIX HISTORY UNIX is a multiuser operating system developed by Dennis Ritchie and Ken Thompson at AT&T Bell Labs [266]. UNIX started as a small project to build an operating system to play a game on an available PDP-7 computer. However, UNIX grew over the next 10 to 15 years into a system with considerable mindshare, such that a variety of commercial UNIX efforts were launched. The lack of coherence in these efforts may have limited the market penetration of UNIX, but many vendors, even Microsoft, had their own versions. UNIX remains a significant operating system today, embodied in many systems, such as Linux, Sun Solaris, IBM AIX, the various BSD systems, etc. Recall from Chapter 3 that Bell Labs was a member of the Multics consortium. However, Bell Labs dropped out of the Multics project in 1969, primarily due to delays in the project. -
Least Privilege and Privilege Separation
CSE 127: Computer Security Least privilege and privilege separation Deian Stefan Slides adopted from John Mitchell, Dan Boneh, and Stefan Savage This week… • How to build secure systems ➤ Least privilege and privilege separation ➤ Sandboxing and isolation • Key is underlying principles not mechanisms ➤ We’re going to look at systems techniques ➤ Other ways to achieve similar goals: language-based Principles of secure design • Principle of least privilege • Privilege separation • Defense in depth ➤ Use more than one security mechanism ➤ Fail securely/closed • Keep it simple Principles of secure design • Principle of least privilege • Privilege separation • Defense in depth ➤ Use more than one security mechanism ➤ Fail securely/closed • Keep it simple Principle of Least Privilege Defn: A system should only have the minimal privileges needed for its intended purposes • What’s a privilege? ➤ Ability to access (e.g., read or write) a resource Principle of Least Privilege Defn: A system should only have the minimal privileges needed for its intended purposes • What’s a privilege? ➤ Ability to access (e.g., read or write) a resource Principle of Least Privilege Defn: A system should only have the minimal privileges needed for its intended purposes • What’s a privilege? ➤ Ability to access (e.g., read or write) a resource What’s the problem with this defn? • Talking about a huge, monolith system is not really useful • Why? Network Network User input User device File system File system Breaking a system into components • Compartmentalization and isolation ➤ Separate the system into isolated compartments ➤ Limit interaction between compartments • Why is this more meaningful? Network Network User input User device File system File system How dow we break things apart? Map compartment to user ids! • Recall: permissions in UNIX granted according to UID ➤ A process may access files, network sockets, …. -
New Concept of the Android Keystore Service with Regard to Security and Portability
University of Bremen Department of Mathematics and Computer Science New concept of the Android keystore service with regard to security and portability. Master’s Thesis by Fritjof Bornebusch reviewed by Dr. Karsten Sohr Prof. Dr. Jan Peleska supervised by Dipl. Inf. Florian Junge 2016 Confirmation I hereby confirm that I wrote this master thesis on my own and that I have used only the indicated references, resources, and aids. In German: Hiermit bestätige ich, dass ich die vorliegende Masterthesis selbstständig verfasst, und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Bremen, 1/13/2016 Fritjof Bornebusch “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler – Bornebusch, Fritjof New concept of the Android keystore service with regard to security and portability. Master’s thesis, Department 3 - Mathematics / Computer Science University of Bremen, 2015 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). To view a copy of this license, send an email to [email protected], visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, California, 94042, USA. Table of Contents Acknowledgements 7 List of Figures 9 List of Listings 10 Acronyms 13 Glossary 15 1 Introduction 19 2 Background 24 2.1 Android System Architecture . 24 2.1.1 Security-Enhanced Linux . 28 2.1.2 Capabilities . 31 2.2 Memory Vulnerabilities . 32 2.2.1 Buffer Overflow Protection . 33 2.2.2 Dead Store Elimination . -
Integration of Security Measures and Techniques in an Operating System (Considering Openbsd As an Example)
Motivation Security Solutions and Techniques Summary Integration of Security Measures and Techniques in an Operating System (considering OpenBSD as an example) Igor Boehm Institute for Information Processing and Microprocessor Technology Johannes Kepler University Linz, Austria Igor Boehm Integration of Security Measures and Techniques in an OS Motivation Security Solutions and Techniques Summary Outline 1 Motivation The Basic Problem Being Studied Preliminary Solution Ideas and Goals 2 Security Solutions and Techniques Secure Software Design Techniques Memory Protection Techniques Relevance of Random Numbers for Security Igor Boehm Integration of Security Measures and Techniques in an OS Motivation The Basic Problem Being Studied Security Solutions and Techniques Preliminary Solution Ideas and Goals Summary Outline 1 Motivation The Basic Problem Being Studied Preliminary Solution Ideas and Goals 2 Security Solutions and Techniques Secure Software Design Techniques Memory Protection Techniques Relevance of Random Numbers for Security Igor Boehm Integration of Security Measures and Techniques in an OS Motivation The Basic Problem Being Studied Security Solutions and Techniques Preliminary Solution Ideas and Goals Summary The Basic Problem Being Studied The Clever Attacker: . finds a bug . knows how to craft an exploit . the exploit grants the attacker an advantage . the exploit is likely to work on many systems because of the strict regularity of the system environment Is there a way to solve this problem? Igor Boehm Integration of Security -
Z/OS Openssh User's Guide
z/OS Version 2 Release 4 z/OS OpenSSH User's Guide IBM SC27-6806-40 Note Before using this information and the product it supports, read the information in “Notices” on page 503. This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2020-11-16 © Copyright International Business Machines Corporation 2015, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................. ix Tables.................................................................................................................. xi About this document...........................................................................................xiii Who should use this document?............................................................................................................... xiii z/OS information........................................................................................................................................xiii Discussion list...................................................................................................................................... xiii How to send your comments to IBM......................................................................xv If you have a technical problem.................................................................................................................xv -
User-Driven Access Control: Rethinking Permission Granting in Modern Operating Systems
This paper appears at the 33rd IEEE Symposium on Security and Privacy (Oakland 2012). User-Driven Access Control: Rethinking Permission Granting in Modern Operating Systems Franziska Roesner, Tadayoshi Kohno Alexander Moshchuk, Bryan Parno, Helen J. Wang Crispin Cowan ffranzi, [email protected] falexmos, parno, [email protected] [email protected] University of Washington Microsoft Research Microsoft Abstract— Modern client platforms, such as iOS, Android, Thus, a pressing open problem is how to allow users to Windows Phone, Windows 8, and web browsers, run each ap- grant applications access to user-owned resources: privacy- plication in an isolated environment with limited privileges. A and cost-sensitive devices and sensors (e.g., the camera, GPS, pressing open problem in such systems is how to allow users to grant applications access to user-owned resources, e.g., to or SMS), system services and settings (e.g., the contact list privacy- and cost-sensitive devices like the camera or to user or clipboard), and user content stored with various applica- data residing in other applications. A key challenge is to en- tions (e.g., photos or documents). To address this problem, able such access in a way that is non-disruptive to users while we advocate user-driven access control, whereby the system still maintaining least-privilege restrictions on applications. captures user intent via authentic user actions in the context In this paper, we take the approach of user-driven access con- trol, whereby permission granting is built into existing user ac- of applications. Prior work [22, 32, 33] applied this principle tions in the context of an application, rather than added as an largely in the context of least-privilege file picking, where an afterthought via manifests or system prompts. -
Mac OS X and Ios Zero- Day Exploit
Mac OS X and iOS Zero- Day Exploit Security Advisory AE-Advisory 16-08 Criticality High Advisory Released On 28 March 2016 Impact Allows someone to escalate privileges and also to bypass system integrity Solution See the solution section below for mitigation processes. Affected Platforms Mac OS X 10.11.3 and older, iOS 9.2 and older Summary aeCERT has researched and found out about a new threat on Apple Mac OS X and iOS; with the release of OS X El Capitan, Apple introduced a security protection feature to the OS X kernel called System Integrity Protection (SIP). The feature is designed to prevent potentially malicious or bad software from modifying protected files and folders on your Mac. The purpose of SIP is to restrict the root account of OS X devices and limit the actions a root user can perform on protected parts of the system in an effort to reduce the chance of malicious code hijacking a device or performing privilege escalation. However, it has been uncovered a critical vulnerability in both OS X and iOS that allows for local privilege escalation as well as bypasses SIP without karnel exploit impacting all versions to date. Threat Details The zero day vulnerability is a Non-Memory Corruption bug that allows hackers to execute arbitrary code on any targeted machine, perform remote code execution (RCE) or sandbox escapes. The attacker then escalates the malware's privileges to bypass System Integrity Protection SIP, alter system files, and then stay on the infected system. By default, System Integrity Protection or SIP protects these folders: /System. -
Download the Ethical Hacker's Guide to System Hacking
The Ethical Hacker's Guide To System Hacking Attacker acquires information through techniques such as foot printing, scanning and enumeration to hack the target system. 1 Footprinting Scanning Enumeration Module Vulnerability Analysis It is the process of accumulating data Vulnerability Assessment is an This is a procedure for identifying This is a method of intrusive probing, Footprinting Scanning System Hacking regarding a specific network environment. active hosts, open ports, and unnecessary through which attackers gather examination of the ability of a system or In this phase, the attacker creates a profile services enabled on ports. Attackers use information such as network user lists, application, including current security CEH concepts of the target organization, obtaining different types of scanning, such as port routing tables, security flaws, and procedures, and controls to with stand 2 information such as its IP address range, scanning network scanning, and simple network protocol data (SNMP) assault. Attackers perform this analysis Methodology Vulnerability namespace and employees. Enumeration vulnerability, scanning of target networks data. to identify security loopholes, in the target Analysis Footprinting eases the process of or systems which help in identifying organization’s network, communication system hacking by revealing its possible vulnerabilities. infrastructure, and end systems. vulnerabilities 3 Clearing Logs Maintaining Access Gaining Access Hacking Stage Escalating Privileges Hacking Stage Gaining Access It involves gaining access to To maintain future system access, After gaining access to the target low-privileged user accounts by To acquire the rights of To bypass access CEH Hacking attackers attempt to avoid recognition system, attackers work to maintain cracking passwords through Goal another user or Goal controls to gain System Hacking by legitimate system users. -
LIBRARIES Building a Global Information Assurance Program.Pdf
Building a Global Information Assurance Program OTHER AUERBACH PUBLICATIONS The ABCs of IP Addressing Information Security Management Gilbert Held Handbook, 4th Edition, Volume 4 ISBN: 0-8493-1144-6 Harold F. Tipton and Micki Krause, Editors The ABCs of TCP/IP ISBN: 0-8493-1518-2 Gilbert Held Information Security Policies, ISBN: 0-8493-1463-1 Procedures, and Standards: Building an Information Security Guidelines for Effective Information Awareness Program Security Management Mark B. Desman Thomas R. Peltier ISBN: 0-8493-0116-5 ISBN: 0-8493-1137-3 Building a Wireless Office Information Security Risk Analysis Gilbert Held Thomas R. Peltier ISBN: 0-8493-1271-X ISBN: 0-8493-0880-1 The Complete Book of Middleware A Practical Guide to Security Engineering Judith Myerson and Information Assurance ISBN: 0-8493-1272-8 Debra Herrmann ISBN: 0-8493-1163-2 Computer Telephony Integration, 2nd Edition The Privacy Papers: William A. Yarberry, Jr. Managing Technology and Consumers, ISBN: 0-8493-1438-0 Employee, and Legislative Action Rebecca Herold Cyber Crime Investigator’s Field Guide ISBN: 0-8493-1248-5 Bruce Middleton ISBN: 0-8493-1192-6 Secure Internet Practices: Best Practices for Securing Systems in Cyber Forensics: A Field Manual for the Internet and e-Business Age Collecting, Examining, and Preserving Patrick McBride, Jody Patilla, Evidence of Computer Crimes Craig Robinson, Peter Thermos, Albert J. Marcella and Robert S. Greenfield, and Edward P. Moser Editors ISBN: 0-8493-1239-6 ISBN: 0-8493-0955-7 Securing and Controlling Cisco Routers Global Information Warfare: Peter T. Davis How Businesses, Governments, and ISBN: 0-8493-1290-6 Others Achieve Objectives and Attain Competitive Advantages Securing E-Business Applications and Andy Jones, Gerald L. -
Scalar I3 and I6 Open Source Software Licenses
Tape Automation Scalar i3 & Scalar i6, Firmware Release 1.1 (110G) Open Source Software Licenses Open Source Software (OSS) Licenses for: • Scalar i3 & Scalar i6 Firmware Release 1.1 (110G). The firmware/software contained in the Scalar i3 & Scalar i6 is an aggregate of vendor proprie- tary programs as well as third party programs, including Open Source Software (OSS). Use of OSS is subject to designated license terms and the following OSS license disclosure lists all open source components and applicable licenses that are part of the tape library firmware. All software that is designated as OSS may be copied, distributed, and/or modified in accordance with the terms and conditions of its respective license(s). Additionally, for some OSS you are entitled to obtain the corresponding OSS source files as required by the respective and applicable license terms. While GNU General Public License ("GPL") and GNU Lesser General Public Li- cense ("LGPL") licensed OSS requires that the sources be made available, Quantum makes all tape library firmware integrated OSS source files, whether licensed as GPL, LGPL or otherwise, available upon request. Please refer to the Scalar i3 & Scalar i6 Open Source License CD (part number 3-07787-01) when making such request. For contact information, see Getting More In- formation. LTO tape drives installed in the library may also include OSS components. For a complete list- ing of respective OSS packages and applicable OSS license information included in LTO tape drives, as well as instructions to obtain source files pursuant to applicable license requirements, please reference the Tape Automation disclosure listings under the Open Source Information link at www.quantum.com/support. -
Android Exploits Commanding Higher Price Than Ever Before
Memo 10/09/2019 - TLP:WHITE Android exploits commanding higher price than ever before Reference: Memo [190910-1] – Version: 1.0 Keywords: Android, iOS, exploit, vulnerability Sources: Zerodium, Google, Wired Key Points The price of android exploits exceeds the price of iOS exploits for the first time This is possibly because Android security is improving over iOS The release of Android 10 is also a likely cause for the price hike Summary Zerodium1, a cyber security exploit broker dealing in zero-day vulnerabilities, has published its most recent price list. It indicates that the price of an Android full-chain exploit with persistence can fetch the developer up to 2,500,000 dollars. The going rate for a similar exploit for Apple’s iOS has gone down by 500,000 dollars and is now worth 2,000,000. This is the first confirmed time when Android exploits are valued more than iOS. Zerodium payouts for mobile devices Up to $2,500,000 Android zero click full compromise chain with persistence. Up to $2,000,000 iOS zero click full compromise chain with persistence. Up to $1,500,000 WhatsApp zero click remote code execution with iMessage remote code execution with local local privilege escalation on iOS or Android. privilege escalation. Up to $1,000,000 WhatsApp remote code execution with local privilege SMS/MMS remote code execution with local escalation on iOS or Android. privilege escalation on iOS or Android. Comments Zero-click exploits do not require interaction from the user. This is very difficult to achieve and thus commands the highest prices. -
The Design of the Openbsd Cryptographic Framework
The Design of the OpenBSD Cryptographic Framework Angelos D. Keromytis Jason L. Wright Theo de Raadt Columbia University OpenBSD Project OpenBSD Project [email protected] [email protected] [email protected] Abstract the design of these systems is intended to impede sim- ple, brute-force, computational attacks. This complexity drives the belief that strong security is fundamentally in- Cryptographic transformations are a fundamental build- imical to good performance. ing block in many security applications and protocols. To improve performance, several vendors market hard- This belief has led to the common predilection to avoid ware accelerator cards. However, until now no operating cryptography in favor of performance [22]. However, system provided a mechanism that allowed both uniform the foundation for this belief is often software imple- and efficient use of this new type of resource. mentation [8] of algorithms intended for efficient hard- ware implementation. To address this issue, vendors We present the OpenBSD Cryptographic Framework have been marketing hardware cryptographic acceler- (OCF), a service virtualization layer implemented in- ators that implement several cryptographic algorithms side the kernel, that provides uniform access to accel- used by security protocols and applications. However, erator functionality by hiding card-specific details be- modern operating systems lack the necessary support hind a carefully-designed API. We evaluate the impact to provide efficient access to such functionality to ap- of the OCF in a variety of benchmarks, measuring over- plications and the operating system itself through a all system performance, application throughput and la- uniform API that abstracts away device details. As tency, and aggregate throughput when multiple applica- a result, accelerators are often used directly through tions make use of it.