Studying the Surface of Asteroids by Investigating Powder in the Lab
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Weathering of Itokawa Particles: Implications for Regolith Evolution
46th Lunar and Planetary Science Conference (2015) 2351.pdf SPACE WEATHERING OF ITOKAWA PARTICLES: IMPLICATIONS FOR REGOLITH EVOLUTION. Eve L. Berger1 and Lindsay P. Keller2, 1Geocontrol Systems – Jacobs JETS contract – NASA Johnson Space Center, Houston TX 77058, [email protected], 2NASA Johnson Space Center Introduction: Space weathering processes such as tion rate of 4.1 ±1.2 × 104 tracks/cm2/year at 1AU [6] solar wind irradiation and micrometeorite impacts are are: ~80,000 years for 0211, ~70,000 years for 0192, known to alter the the properties of regolith materials and ~24,000 years for 0125. exposed on airless bodies [1]. The rates of space Discussion: Cosmic-ray exposure: Measurements weathering processes however, are poorly constrained of cosmic-ray exposure (CRE) ages of Itokawa parti- for asteroid regoliths, with recent estimates ranging cles [6-8] reveal that these grains are relatively young, over many orders of magnitude [e.g., 2, 3]. The return of surface samples by JAXA’s Hayabusa mission to ≤1−1.5 Ma, when compared to the distribution of ex- asteroid 25143 Itokawa, and their laboratory analysis posure ages for LL chondrite meteorites (8−50Ma) [9]. provides “ground truth” to anchor the timescales for The CRE ages for Itokawa grains are consistent with a space weathering processes on airless bodies. Here, we stable regolith at meter-depths for ~106 years. use the effects of solar wind irradiation and the Solar flare particle tracks: Based on the solar flare accumulation of solar flare tracks recorded in Itokawa particle track production rate in olivine at 1AU [6], the grains to constrain the rates of space weathering and Itokawa grains recorded solar flare tracks over time- yield information about regolith dynamics on these scales of <105 years. -
(101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. -
Space Weathering on Mercury
Advances in Space Research 33 (2004) 2152–2155 www.elsevier.com/locate/asr Space weathering on Mercury S. Sasaki *, E. Kurahashi Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113 0033, Japan Received 16 January 2003; received in revised form 15 April 2003; accepted 16 April 2003 Abstract Space weathering is a process where formation of nanophase iron particles causes darkening of overall reflectance, spectral reddening, and weakening of absorption bands on atmosphereless bodies such as the moon and asteroids. Using pulse laser irra- diation, formation of nanophase iron particles by micrometeorite impact heating is simulated. Although Mercurian surface is poor in iron and rich in anorthite, microscopic process of nanophase iron particle formation can take place on Mercury. On the other hand, growth of nanophase iron particles through Ostwald ripening or repetitive dust impacts would moderate the weathering degree. Future MESSENGER and BepiColombo mission will unveil space weathering on Mercury through multispectral imaging observations. Ó 2003 COSPAR. Published by Elsevier Ltd. All rights reserved. 1. Introduction irradiation should change the optical properties of the uppermost regolith surface of atmosphereless bodies. Space weathering is a proposed process to explain Although Hapke et al. (1975) proposed that formation spectral mismatch between lunar soils and rocks, and of iron particles with sizes from a few to tens nanome- between asteroids (S-type) and ordinary chondrites. ters should be responsible for the optical property Most of lunar surface and asteroidal surface exhibit changes, impact-induced formation of glassy materials darkening of overall reflectance, spectral reddening had been considered as a primary cause for space (darkening of UV–Vis relative to IR), and weakening of weathering. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Abstracts of the 50Th DDA Meeting (Boulder, CO)
Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011). -
PSRD | a Cosmosparks Report
PSRD | A CosmoSparks report Quick Views of Big Advances Solar Wind Interactions with a Lunar Paleo-magnetosphere How would an ancient, global magnetic field on the Moon and its associated paleo-magnetosphere interact with the incoming, charged particles in the solar wind plasma? Would a paleo-magnetosphere shield the lunar surface from solar wind bombardment? Answering these questions improves our understanding of processes that were influenced by the Moon's paleo-magnetosphere, such as the accumulation and space weathering of volatiles in the polar regions. This is the work being undertaken by Ian Garrick-Bethell (University of California, Santa Cruz/Kyung Hee University, South Korea), Andrew Poppe (University of California, Berkeley/SSERVI NASA Ames), and Shahab Fatemi (Swedish Institute of Space Physics, Kiruna). Using computer models of the plasma environment with solar wind parameters appropriate for ~2 billion years ago, Garrick-Bethell and coauthors simulated its interaction with a lunar paleo-magnetosphere. The researchers applied Amitis, a fast, 3D computer model of plasma (kinetic ions and fluid electrons). They modeled the solar wind as H+ and used lunar surface paleo-magnetic field strengths of 0.5µT, 2µT, and 5µT (microteslas) at different orientations. (Earth, by comparison, has a surface magnetic field strength ranging from ~20 to 60µT.) Shown on the left is a 2D plot of one of the Moon-modeling results of plasma density for the case of a spin-aligned 2µT equatorial surface magnetic field strength. The magnetic dipole moment is vertical, as indicated by the small black arrow. The solar wind flows from right to left. In addition to the bow shock showing where the solar wind is diverted around the lunar magnetosphere, the modeling results clearly indicate the two polar cusps (areas of focused field lines) where solar wind plasma funnels down to the lunar surface. -
Evolution of Dust Particles Ejected by Catastrophic Asteroidal Disruptions
EVOLUTION OF DUST PARTICLES EJECTED BY CATASTROPHIC ASTEROIDAL DISRUPTIONS Thomas Kehoe, Stanley Dermott, Ashley Espy Department of Astronomy, University of Florida The contribution of asteroidal dust to the zodiacal cloud has previously been discussed in terms of a collisional cascade process, whereby dust is produced by the grinding down of large objects. However, there is now evidence that debris disks, such as the zodiacal cloud, are refreshed stochastically by the injection of dust produced by the catastrophic collisional breakup of a large planetesimal. Asteroid families provide dramatic proof of the occurrence of such collisions in the solar system. There are now known to be at least two examples of asteroids, tens to hundreds of kilometers in diameter, that have been catastrophically disrupted by an impact within the last ten million years. These collisional events resulted in the creation of the Veritas family and the Karin cluster. Enormous quantities of dust are injected into the zodiacal cloud following such family-forming impact events and the remnants of the collisional debris produced by these disruptions can still be observed today in the form of dust bands. Following its production, this material evolves both dynamically and collisionally, with the result that a wave of dust particles is transported from its source region in the asteroid belt into the inner solar system Evidence shows that many asteroids are not coherent, solid bodies but are instead highly fractured, highly porous, and only loosely bound by gravity. Dust may be generated by im- pact processes in the regoliths of such ”rubble piles” and so the contribution of asteroidal dust to the zodiacal cloud may be determined by a quite different mechanism to the col- lisional cascade process, with only a few rubble piles providing the majority of asteroidal dust in the solar system at any particular epoch. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
Interstellar Heliospheric Probe/Heliospheric Boundary Explorer Mission—A Mission to the Outermost Boundaries of the Solar System
Exp Astron (2009) 24:9–46 DOI 10.1007/s10686-008-9134-5 ORIGINAL ARTICLE Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system Robert F. Wimmer-Schweingruber · Ralph McNutt · Nathan A. Schwadron · Priscilla C. Frisch · Mike Gruntman · Peter Wurz · Eino Valtonen · The IHP/HEX Team Received: 29 November 2007 / Accepted: 11 December 2008 / Published online: 10 March 2009 © Springer Science + Business Media B.V. 2009 Abstract The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current under- standing of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of The IHP/HEX Team. See list at end of paper. R. F. Wimmer-Schweingruber (B) Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 11, 24098 Kiel, Germany e-mail: [email protected] R. McNutt Applied Physics Laboratory, John’s Hopkins University, Laurel, MD, USA N. A. Schwadron Department of Astronomy, Boston University, Boston, MA, USA P. C. Frisch University of Chicago, Chicago, USA M. Gruntman University of Southern California, Los Angeles, USA P. Wurz Physikalisches Institut, University of Bern, Bern, Switzerland E. Valtonen University of Turku, Turku, Finland 10 Exp Astron (2009) 24:9–46 interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. -
Organic Material on Ceres: Insights from Visible and Infrared Space Observations
life Article Organic Material on Ceres: Insights from Visible and Infrared Space Observations Andrea Raponi 1,* , Maria Cristina De Sanctis 1, Filippo Giacomo Carrozzo 1 , Mauro Ciarniello 1 , Batiste Rousseau 1 , Marco Ferrari 1 , Eleonora Ammannito 2, Simone De Angelis 1, Vassilissa Vinogradoff 3, Julie C. Castillo-Rogez 4, Federico Tosi 1, Alessandro Frigeri 1 , Michelangelo Formisano 1 , Francesca Zambon 1, Carol A. Raymond 4 and Christopher T. Russell 5 1 Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy; [email protected] (M.C.D.S.); fi[email protected] (F.G.C.); [email protected] (M.C.); [email protected] (B.R.); [email protected] (M.F.); [email protected] (S.D.A.); [email protected] (F.T.); [email protected] (A.F.); [email protected] (M.F.); [email protected] (F.Z.) 2 Agenzia Spaziale Italiana, 00133 Rome, Italy; [email protected] 3 Physique des Interactions Ioniques et Moléculaires, PIIM, Université d’Aix-Marseille, 13013 Marseille, France; [email protected] 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; [email protected] (J.C.C.-R.); [email protected] (C.A.R.) 5 Earth Planetary and Space Sciences, University of California, Los Angeles, CA 90095, USA; [email protected] * Correspondence: [email protected] Abstract: The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. -
Is Asteroid 2002Ny40 a Rubble Pile Gravitationally Disrupted? J
Lunar and Planetary Science XXXIX (2008) 1692.pdf IS ASTEROID 2002NY40 A RUBBLE PILE GRAVITATIONALLY DISRUPTED? J. M. Trigo-Rodríguez1,2, W.F. Bottke3, A. Campo Bagatin4, P. Tanga5, J. Llorca6, D.C. Jones7, I.P. Williams7, J.M. Madiedo8, and E. Lyytinen9. 1Institute of Space Sciences (CSIC). Campus UAB, Facultat de Ciències, Torre C5-2ª planta. 08193 Bellaterra, Spain; 2Institut d’Estudis Espacials de Catalunya. Gran Capità 2-4, Ed. Nexus. 08034 Bar- celona, Spain; 3 Southwest Research Institute, Boulder, Colorado, USA; 4 Universidad de Alicante, Spain; 5 Obser- vatoire de Nice, France; 6 Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya (UPC), Barce- lona; 7 Astronomy Unit, Queen Mary University of London, London, United Kingdom; 8 Facultad de Ciencias, Uni- versidad de Huelva, Spain; 9 Finish Fireball Network, Kehäkukantie 3B, 00720 Helsinki, Finland. Introduction: The existence of meteoroid streams Results and discussion: Due to the relative low containing meter-sized meteoroids capable of produc- population of the NEO region, a collision among as- ing meteorites after atmospheric interaction was pro- teroids is an unlikely, but not negligible process for posed quite recently [1]. Their existence has important producing the observed asteroidal fragments. In any implications because they can be naturally delivering case, we have searched for alternative processes capa- to the Earth different types of rock-forming materials ble of producing the meteoroid stream. a) One option from Potentially Hazardous Asteroids (PHA). would be that the meteoroids were ejected by a fast rotator, unlikely according to the present spin of both The recent identification of Near Earth Object asteroids, but not taking into account the YORP effect. -
Small Solar System Bodies As Granular Media D
Small Solar System Bodies as granular media D. Hestroffer, P. Sanchez, L Staron, A. Campo Bagatin, S. Eggl, W. Losert, N. Murdoch, E. Opsomer, F. Radjai, D. C. Richardson, et al. To cite this version: D. Hestroffer, P. Sanchez, L Staron, A. Campo Bagatin, S. Eggl, et al.. Small Solar System Bodiesas granular media. Astronomy and Astrophysics Review, Springer Verlag, 2019, 27 (1), 10.1007/s00159- 019-0117-5. hal-02342853 HAL Id: hal-02342853 https://hal.archives-ouvertes.fr/hal-02342853 Submitted on 4 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron Astrophys Rev manuscript No. (will be inserted by the editor) Small solar system bodies as granular media D. Hestroffer · P. S´anchez · L. Staron · A. Campo Bagatin · S. Eggl · W. Losert · N. Murdoch · E. Opsomer · F. Radjai · D. C. Richardson · M. Salazar · D. J. Scheeres · S. Schwartz · N. Taberlet · H. Yano Received: date / Accepted: date Made possible by the International Space Science Institute (ISSI, Bern) support to the inter- national team \Asteroids & Self Gravitating Bodies as Granular Systems" D. Hestroffer IMCCE, Paris Observatory, universit´ePSL, CNRS, Sorbonne Universit´e,Univ.