A Systems Thinking and Systems Theory Approach to Managing Cyber Security Risks

Total Page:16

File Type:pdf, Size:1020Kb

A Systems Thinking and Systems Theory Approach to Managing Cyber Security Risks Cyber Safety: A Systems Thinking and Systems Theory Approach to Managing Cyber Security Risks Hamid Salim Working Paper CISL# 2014-07 May 2014 Composite Information Systems Laboratory (CISL) Sloan School of Management, Room E62-422 Massachusetts Institute of Technology Cambridge, MA 02142 Cyber Safety: A Systems Thinking and Systems Theory Approach to Managing Cyber Security Risks By Hamid M. Salim Submitted to the MIT Sloan School of Management, the School of Engineering, and the Department of Electrical Engineering & Computer Science in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Engineering and Management and Master of Science in Electrical Engineering and Computer Science in conjunction with the System Design and Management Program at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 © 2014 Hamid M. Salim. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author......................................................................................................................................... System Design & Management Program May 16, 2014 Certified by...................................................................................................................................................... Stuart Madnick John Norris Maguire Professor of Information Technologies, MIT Sloan School of Management & Professor of Engineering Systems, MIT School of Engineering Thesis Supervisor Certified by...................................................................................................................................................... Qi D. Van Eikema Hommes Research Scientist, Engineering Systems Division, MIT School of Engineering Thesis Supervisor Accepted by...................................................................................................................................................... Professor Leslie A. Kolodziejski Chair of the Committee on Graduate Students Accepted by...................................................................................................................................................... Patrick Hale Director System Design & Management Program THIS PAGE INTENTIONALLY LEFT BLANK 2 Cyber Safety: A Systems Thinking and Systems Theory Approach to Managing Cyber Security Risks By Hamid M. Salim Submitted to the MIT Sloan School of Management, the School of Engineering, and the Department of Electrical Engineering & Computer Science on May 16, 2014 in partial fulfillment of the requirements for the degrees of Master of Science in Engineering and Management and Master of Science in Electrical Engineering and Computer Science in conjunction with the System Design and Management Program Abstract “…we must think anew, and act anew…” - President Abraham Lincoln, December 1, 1862 If we are to manage cyber security risks more effectively in today’s complex and dynamic Web 2.0 environment, then a new way of thinking is needed to complement traditional approaches. According to Symantec’s 2014 Internet Security Threat Report, in 2012 more than ten million identities that included real names, dates of birth, and social security were exposed by a single breach. In 2013 there were eight breaches that each exposed over ten million identities. These breaches were recorded despite the fact that significant resources are expended, on managing cyber security risks each year by businesses and governments. The objective of this thesis was twofold. The first objective was to understand why traditional approaches for managing cyber security risks were not yielding desired results. Second, propose a new method for managing cyber security risks more effectively. The thesis investigated widely used approaches and standards, and puts forward a method based on the premise that traditional technology centric approaches have become ineffective on their own. This lack of efficacy can be attributed primarily to the fact that, Web 2.0 is a dynamic and a complex socio-technical system that is continuously evolving. This thesis proposes a new method for managing cyber security risks based on a model for accident or incident analysis, used in Systems Safety field. The model is called System-Theoretic Accident Model and Processes (STAMP). It is rooted in Systems Thinking and Systems Theory. Based on a case study specifically written for this thesis, the largest cyber-attack reported in 2007 on a major US based retailer, is analyzed using the STAMP model. The STAMP based analysis revealed insights both at systemic and detailed level, which otherwise would not be available, if traditional approaches were used for analysis. Further, STAMP generated specific recommendations for managing cyber security risks more effectively. Thesis Advisor: Stuart Madnick Title: John Norris Maguire Professor of Information Technology, MIT Sloan School of Management & Professor of Engineering Systems, MIT School of Engineering Thesis Advisor: Qi D. Van Eikema Hommes Title: Research Scientist, Engineering Systems Division, MIT School of Engineering 3 THIS PAGE INTENTIONALLY LEFT BLANK 4 Acknowledgments I was fortunate to have Professor. Stuart Madnick and Qi Hommes as my advisors, and I am profoundly grateful for their support and guidance during the process of writing my thesis. Professor Madnick believed in me and my research topic, and provided support when there was no wind to fill sails or when seas were rough. Because of his continued support and patience the ship stayed afloat. His cyber security expertise and feedback provided me with tremendous learning opportunities that helped shape my thesis and create a quality product. Qi brought new life to my thesis, and her expertise helped set sail on the correct course with reference to STAMP/CAST analysis that generated the much needed momentum. Her questions and feedback provided me with unique opportunities to reflect, think with more depth, learn, and continuously improve the quality of my work, specifically with reference to STAMP/CAST model application to cyber security. Thank you Professor. Madnick and Qi in helping me create a robust and quality product. I appreciate your time, help, and advice. Patrick Hale as always was available to serve as a safe harbor. As a mentor, Pat provided me with advice and support to work through challenges and set sail again towards completing my thesis. Thank you, Pat for acting as an anchor during rough seas and providing guidance. Many thanks to Jeff Shao (former SDM Finance Director), for always being approachable and eager to help me with financial matters. Thanks to System Design and Management (SDM) program staff for their administrative support. Inspiration provided by my parents has enabled me to achieve my goals throughout life. My father, from his extremely humble beginnings taught me the value of education and hard work. My mother, despite her very limited formal education taught me to read, write, and tie a necktie. Without my parents support and advice, I would not be where I am today, thank you Daddy and Ami for your guidance, advice, inspiration, values, and a loving family. My siblings and their families are dispersed across the globe, but were never too far to provide their support and encouragement. My profound gratitude to my sisters Fauzia and Sofia, my brother Sajid, my nieces Benish, Mahwish, Sidra, Zobia, and nephew Daanyal. “To reach a port we must sail, sometimes with the wind, and sometimes against it. But we must not drift or lie at anchor.” – Oliver Wendell Holmes, Sr. 5 THIS PAGE INTENTIONALLY LEFT BLANK 6 Dedicated To my Dear Father – a proud Naval Officer, an Engineer, and an Entrepreneur Captain. M. Salim Anwar T.I. (M), P.N. Retired. And to my Dear Mother – the foundation and the guiding light of our family Najma Salim 7 THIS PAGE INTENTIONALLY LEFT BLANK 8 Table of Contents 1 Introduction ................................................................................................................................ 15 1.1 Cybercrime Trend ............................................................................................................... 15 1.2 Cost of Cybercrime ............................................................................................................. 16 1.3 Asymmetries ....................................................................................................................... 17 1.4 Efficacy of Traditional Methods ......................................................................................... 18 1.5 Limitations of Traditional Methods .................................................................................... 22 1.6 Cyber Security Risk Categories .......................................................................................... 26 1.7 Holistic Approach to Cyber Security .................................................................................. 26 1.8 Thesis Structure .................................................................................................................. 31 2 Literature Review....................................................................................................................... 33 2.1 Chain-of-Events Model ....................................................................................................... 33 2.2 Fault Tree Analysis (FTA) .................................................................................................
Recommended publications
  • Cyber Security Practices and Challenges at Selected Critical Infrastructures in Ethiopia: Towards Tailoring Cyber Security Framework
    ADDIS ABABA UNIVERSITY COLLEGE OF NATURAL AND COMPUTATIONAL SCIENCES SCHOOL OF INFORMATION SCIENCE CYBER SECURITY PRACTICES AND CHALLENGES AT SELECTED CRITICAL INFRASTRUCTURES IN ETHIOPIA: TOWARDS TAILORING CYBER SECURITY FRAMEWORK By TEWODROS GETANEH JUNE, 2018 ADDIS ABABA, ETHIOPIA ADDIS ABABA UNIVERSITY COLLEGE OF NATURAL AND COMPUTATIONAL SCIENCES SCHOOL OF INFORMATION SCIENCE CYBER SECURITY PRACTICES AND CHALLENGES AT SELECTED CRITICAL INFRASTRUCTURES IN ETHIOPIA: TOWARDS TAILORING CYBER SECURITY FRAMEWORK A Thesis Submitted to School of Graduate Studies of Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Science By: TEWODROS GETANEH Advisor: Tebebe Beshah (PhD) JUNE, 2018 Addis Ababa, Ethiopia ADDIS ABABA UNIVERSITY COLLEGE OF NATURAL AND COMPUTATIONAL SCIENCE SCHOOL OF INFORMATION SCIENCE CYBER SECURITY PRACTICES AND CHALLENGES AT SELECTED CRITICAL INFRASTRUCTURES IN ETHIOPIA: TOWARDS TAILORING CYBER SECURITY FRAMEWORK By: Tewodros Getaneh Name and signature of Members of the Examining Board Tebebe Beshah (PhD) __________ _________ Advisor Signature Date Lemma Lenssa (PhD) ___________ __________ Examiner Signature Date Dereje Teferi (PhD) __________ _________ Examiner Signature Date Declaration This thesis has not previously been accepted for any degree and is not being concurrently submitted in candidature for any degree in any university. I declare that the thesis is a result of my own investigation, except where otherwise stated. I have undertaken the study independently with the guidance and support of my research advisor. Other sources are acknowledged by citations giving explicit references. A list of references is appended. Signature: ________________________ Tewodros Getaneh This thesis has been submitted for examination with my approval as university advisor. Advisor’s Signature: ________________________ Tebebe Beshah (PhD) i | P a g e Dedication This work is dedicated to my beloved sister Eleni Getaneh.
    [Show full text]
  • Climate Change Adaptation in the Arab States Best Practices and Lessons Learned
    Climate Change Adaptation in the Arab States Best practices and lessons learned United Nations Development Programme 2018 | 1 UNDP partners with people at all levels of society to help build nations that can withstand crisis, and drive and sustain the kind of growth that improves the quality of life for everyone. On the ground in nearly 170 countries and territories, we offer global perspective and local insight to help empower lives and build resilient nations. www.undp.org The Global Environment Facility (GEF) was established on the eve of the 1992 Rio Earth Summit to help tackle our planet’s most pressing environmental problems. Since then, the GEF has provided over $17 billion in grants and mobilized an additional $88 billion in financing for more than 4000 projects in 170 countries. Today, the GEF is an international partnership of 183 countries, international institutions, civil society organizations and the private sector that addresses global environmental issues. www.thegef.org United Nations Development Programme July 2018 Copyright © UNDP 2018 Manufactured in Bangkok Bangkok Regional Hub (BRH) United Nations Development Programme 3rd Floor United Nations Service Building Rajdamnern Nok Avenue, Bangkok, 10200, Thailand www.adaptation-undp.org Authors: The report preparation was led by Tom Twining-Ward in close collaboration with Kishan Khoday, with Cara Tobin as lead author and Fadhel Baccar, Janine Twyman Mills, Walid Ali and Zubair Murshed as contributing authors. The publication was professionally reviewed by fellow UNDP colleagues, Amal Aldababseh, Greg Benchwick, Hanan Mutwaki, Mohamed Bayoumi, and Walid Ali. Valuable external expert review, comments, and suggestions were provided by Hussein El-Atfy (Arab Water Council), Ibrahim Abdel Gelil (Arabian Gulf University), and William Dougherty (Climate Change Research Group).
    [Show full text]
  • Significant Cyber Incidents Since 2006 This List Is a Work in Progress That We Update As New Incidents Come to Light. If You H
    Significant Cyber Incidents Since 2006 This list is a work in progress that we update as new incidents come to light. If you have suggestions for additions, send them to [email protected]. Significance is in the eye of the beholder, but we focus on successful attacks on government agencies, defense and high tech companies, or economic crimes with losses of more than a million dollars. 1. May 2006. The Department of State’s networks were hacked, and unknown foreign intruders downloaded terabytes of information. If Chinese or Russian spies backed a truck up to the State Department, smashed the glass doors, tied up the guards and spend the night carting off file cabinets it would be an act of war, but when it happens in cyberspace we barely notice. 2. August 2006. A senior Air Force Officer stated publicly that, “China has downloaded 10 to 20 terabytes of data from the NIPRNet (the unclassified military network).” 3. November 2006. Hackers attempted to penetrate U.S. military War College networks, resulting in a two week shutdown at one institution while infected machines are restored. 4. December 2006. NASA was forced to block emails with attachments before shuttle launches out of fear they would be hacked. Business Week reported that the plans for the latest U.S. space launch vehicles were obtained by unknown foreign intruders. 5. 2006. Chinese hackers were thought to be responsible for shutting down the House of Commons computer system. 6. April 2007. The Department of Commerce had to take the Bureau of Industrial Security’s networks offline for several months because its networks were hacked by unknown foreign intruders.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • E-Commerce Security and Fraud Issues and Protections 10
    E-Commerce Security and Fraud Issues and Protections 10 C o n t e n t s Learning Objectives Opening Case: How State University of New York College at Old Westbury Upon completion of this chapter, you will be Controls Its Internet Use ...................................... 458 able to: 10.1 The Information Security Problem .......... 459 1. Understand the importance and scope of security of information systems for EC. 10.2 Basic E-Commerce Security Issues and Landscape ........................................... 465 2. Describe the major concepts and terminol- ogy of EC security. 10.3 Technical Malware Attack Methods: From Viruses to Denial of Service ............ 471 3. Understand about the major EC security threats, vulnerabilities, and technical attacks. 10.4 Nontechnical Methods: From Phishing to Spam and Fraud .................... 476 4. Understand Internet fraud, phishing, and spam. 10.5 The Information Assurance Model 5. Describe the information assurance security and Defense Strategy ................................. 484 principles. 10.6 The Defense I: Access Control, 6. Identify and assess major technologies Encryption, and PKI ................................. 488 and methods for securing EC access and 10.7 The Defense II: Securing communications. E-Commerce Networks ............................. 494 7. Describe the major technologies for protec- 10.8 The Defense III: General Controls, tion of EC networks. Spam, Pop Ups, Fraud, and Social 8. Describe various types of controls and special Engineering Controls................................. 497 defense mechanisms. 10.9 Implementing Enterprisewide 9. Describe consumer and seller protection from E-Commerce Security ............................... 500 fraud. Managerial Issues.................................................. 504 10. Discuss enterprisewide implementation issues Closing Case: How One Bank Stopped Scams, for EC security. Spams, and Cybercriminals ................................. 509 11. Understand why it is so diffi cult to stop computer crimes.
    [Show full text]
  • CIS 381: Social & Ethical Issues of Computing
    CIS 381: Social & Ethical Issues of Computing Security Dr. David Koop D. Koop, CIS 381, Spring 2019 Hackers, Past and Present • Original meaning of hacker: explorer, risk taker, system innovator (e.g. MIT’s Tech Model Railroad Club in 1950s) • Change in meaning from electronics to computers and networks • WarGames (1983): Hacking military supercomputer • Modern meaning of hacker: someone who gains unauthorized access to computers and computer networks [M. J. Quinn] D. Koop, CIS 381, Spring 2019 !2 Password Advice • Do not use short passwords • Do not rely solely on words from the dictionary • Do not rely on substituting numbers for letters • Do not reuse passwords • Give ridiculous answers to security questions • Enable two-factor authentication if available • Have password recoveries sent to a secure email address [M. J. Quinn] D. Koop, CIS 381, Spring 2019 !3 Case Study: Firesheep • October 2010: Eric Butler released Firesheep extension to Firefox browser • Firesheep made it possible for ordinary computer users to easily sidejack Web sessions • More than 500,000 downloads in first week • Attracted great deal of media attention • Early 2011: Facebook and Twitter announced options to use their sites securely • Evaluate: Was this a good action? [M. J. Quinn] D. Koop, CIS 381, Spring 2019 !4 Viruses • Virus: Piece of self-replicating code embedded within another program (host) • Viruses associated with program files - Hard disks, floppy disks, CD- ROMS - Email attachments • How viruses spread - Diskettes or CDs - Email - Files downloaded from Internet [M. J. Quinn] D. Koop, CIS 381, Spring 2019 !5 Worm • Worm: - Self-contained program 7.3 Malware 329 - Spreads via computer network - Exploits security holes W • Tappen's Internet Worm W W - Released worm onto Internet from W MIT computer - Spread to significant numbers of Unix computers W - Infected computers kept crashing or became unresponsive Figure 7.4 A worm spreads to other computers by exploiting security holes in computer networks.
    [Show full text]
  • How to Improve Data Security and Reduce Potential Liability for Data Breaches
    How to Improve Data Security and Reduce Potential Liability for Data Breaches Randy Gainer, Attorney, CISSP February 12, 2014 Topics . The risks of cyber attacks – Identifying threats – Conducting risk assessments . Choosing cost-effective security measures . Evaluating cyber insurance coverage 2 Identifying threats . If your business processes payment cards, card data thieves are targeting your customers’ card data: Trustwave 2013 Global Security Report, 8. 3 Identifying threats . Targeted malware – Deployed by phishing, poisoned websites, poisoned ads, watering hole attacks, and poorly protected third-party access tools. E.g., • Remote access accounts for service vendors that rely on weak passwords; and • Phished credentials for access to the cardholder data environment (“CDE”). 4 Identifying threats . Targeted malware – Programmed to find, copy, store, encrypt, and exfiltrate payment card data – Customized to avoid detection – Allows attacker to persistently communicate with, and exercise command and control of, the malware inside the target network – Permits an attacker to adapt to defenses (e.g., installs multiple backdoors to maintain attacker’s access). 5 Identifying threats . Targeted malware – Used to find assets on the network to steal: Insight Enterprise Intelligence tool. Used with permission. 6 Identifying threats 7 Identifying threats 8 Identifying threats 9 Identifying threats 10 Identifying threats 11 Identifying threats 12 Identifying threats . Issuers, merchants, and acquirers of credit, debit, and prepaid cards experienced gross fraud losses of $11.27 billion in 2012, up 14.6% over the prior year. Card issuers lost 63% and merchants and acquirers lost the other 37%. Business Wire, August 19, 2013, citing The Nilson Report. 13 Identifying threats . Global Payments, Inc.
    [Show full text]
  • Cyberpro December 31, 2009
    Volume 2, Edition 26 CyberPro December 31, 2009 Keeping Cyberspace Professionals Informed Officers The articles and information appearing herein are intended for President educational purposes to promote discussion in the public interest and to Larry K. McKee, Jr. keep subscribers who are involved in the development of Cyber-related concepts and initiatives informed on items of common interest. The Chief Operations Officer newsletter and the information contained therein are not intended to Jim Ed Crouch provide a competitive advantage for any commercial firm. Any misuse or unauthorized use of the newsletter and its contents will result in removal ------------------------------ from the distribution list and/or possible administrative, civil, and/or CyberPro Editor-in-Chief criminal action. Lindsay Trimble The views, opinions, and/or findings and recommendations contained in CyberPro Research Analyst this summary are those of the authors and should not be construed as an Kathryn Stephens official position, policy, or decision of the United States Government, U.S. Department of Defense, or National Security Cyberspace Institute. CyberPro Archive To subscribe or unsubscribe to this newsletter click here CyberPro News Subscription. Please contact Lindsay Trimble regarding CyberPro subscription, sponsorship, and/or advertisement. All rights reserved. CyberPro may not be published, broadcast, rewritten or redistributed without prior NSCI consent. 110 Royal Aberdeen Smithfield, VA 23430 ph. (757) 871 - 3578 CyberPro National Security Cyberspace
    [Show full text]
  • Malware Risks and Mitigation Report
    MALWARE RISKS AND MITIGATION REPORT June 2011 BITS A DIVISION OF THE FINANCIAL SERVICES ROUNDTABLE 1001 PENNSYLVANIA AVENUE NW SUITE 500 SOUTH WASHINGTON, DC 20004 202-289-4322 WWW.BITS.ORG BITS Malware Risk and Mitigation Report Table of Contents 1. Executive Summary ..............................................................................................................3 2. Malware Evolution................................................................................................................3 2.1 Malware Categories...............................................................................................................................5 2.2 Malware Example .................................................................................................................................8 2.3 Polymorphic Malware ........................................................................................................................10 3. Malware Supply and Demand ............................................................................................ 10 3.1 The Malware Industry ........................................................................................................................11 3.2 Malware Supply Chain........................................................................................................................13 3.3 Beyond Crime......................................................................................................................................14 4. Malware in Financial
    [Show full text]
  • G Data Informe Sobre Software Malicioso Informe Semestral Enero-Junio 2010
    G Data Informe sobre software malicioso Informe semestral enero-junio 2010 Ralf Benzmüller & Sabrina Berkenkopf G Data SecurityLabs MalwareReport_1_2010 Go safe. Go.safer. G Data. Informe G Data enero-junio de 2010 sobre software malicioso Contenido Resumen.......................................................................................................................................................3 . Programas.maliciosos:.Cifras.y.datos.....................................................................................................4 Software malicioso a raudales ...................................................................................................................................4 Categorías de malware .................................................................................................................................................5 Familias de programas maliciosos ............................................................................................................................6 Plataformas: .Net se amplía ........................................................................................................................................8 Resumen.y.tendencias.2010....................................................................................................................9 Pronósticos ........................................................................................................................................................................9 Hitos.y.tendencias.durante.el.segundo.semestre.de.2010.............................................................10
    [Show full text]
  • Reedom from Fear SPECIAL ISSUE
    MAX-PLANCK-GESELLSCHAFT reedom from fear www.freedomfromfearmagazine.org SPECIAL ISSUE CYBERCRIMES Looking for Freedom from Fear - July 2010 - Issue n°7 - Magazine Published by UNICRI, Max Planck Institute, Basel Institute on Governance - Editorial Board: Via Maestri del Lavoro,10, 10127, Turin, Italy Safer Spaces? 7 Hackers Profiling: Terrorist use of Cyberwar: Who Are the the Internet and Myth or Reality? Attackers? Legal Response Marco Gercke Raoul Chiesa Daniel Thelesklaf Bruce Schneier Award notification Congratulations your identity has been sold! All our lauded technological progress -- our very civilization - is like the axe in the hand of the pathological criminal. (Albert Einstein) Over the last years we have witnessed changes as we analyzed criminal trends and elaborated new strategies to confront crime. New scenarios have emerged, which have obliged us to improve knowledge and to rethink strategies. These changes are the direct consequences of a wired world driven by global markets where frontiers are abolished mainly in the name of economics. This new world, dominated by new information and communication technologies, has also redefined the criminals’ profile and their modus operandi. Most of the criminal phenomena we are fighting today are transnational. The network woven by organized crime has also become part of our daily life, it has infiltrated the new information and communication technologies (ICT) and, the more we depend on these, the more we are potential victims. ICTs have expanded our possibilities, but they have also enabled a wide spectrum of offences, and the magnitude of these violations can reach impressive levels through the Internet. Nowadays, security is no longer just an issue in the real world: it is a virtual matter as well.
    [Show full text]
  • Chapter 7: Computer and Network Security
    Chapter 7: Computer and Network Security 1 Chapter Overview • Introduction • Hacking • Malware • Cyber crime and cyber attacks • Online voting 1-2 1- 7.1 Introduction • Computers getting faster and less expensive • Utility of networked computers increasing – Shopping and banking – Managing personal information – Controlling industrial processes • Increasing use of computers → growing importance of computer security 1-3 1- 7.2 Hacking 1-4 1- Hackers, Past and Present • Original meaning of hacker: explorer, risk taker, system innovator – MIT’s Tech Model Railroad Club in 1950s • 1960s-1980s: Focus shifted from electronics to computers and networks – 1983 movie WarGames • Modern meaning of hacker: someone who gains unauthorized access to computers and computer networks 1-5 1- Obtaining Login Names, Passwords • Eavesdropping • Dumpster diving • Social engineering 1-6 1- Password Dos and Don’ts • Do not use short passwords. • Do not use a word from the dictionary. • Do not rely on substituting numbers for letters. • Do not reuse passwords. • Give ridiculous answers to security questions. • Enable two-factor authentication if available. • Have password recoveries sent to a secure email address. 1-7 1- Computer Fraud and Abuse Act • Criminalizes wide variety of hacker-related activities – Transmitting code that damages a computer – Accessing any Internet-connected computer without authorization – Transmitting classified government information – Trafficking in computer passwords – Computer fraud – Computer extortion • Maximum penalty: 20 years
    [Show full text]