4. Mechanistic and Other Relevant Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptorchidism and Endocrine Disrupting Chemicals ⇑ Helena E
Molecular and Cellular Endocrinology 355 (2012) 208–220 Contents lists available at SciVerse ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Review Cryptorchidism and endocrine disrupting chemicals ⇑ Helena E. Virtanen , Annika Adamsson Department of Physiology, University of Turku, Finland article info abstract Article history: Prospective clinical studies have suggested that the rate of congenital cryptorchidism has increased since Available online 25 November 2011 the 1950s. It has been hypothesized that this may be related to environmental factors. Testicular descent occurs in two phases controlled by Leydig cell-derived hormones insulin-like peptide 3 (INSL3) and tes- Keywords: tosterone. Disorders in fetal androgen production/action or suppression of Insl3 are mechanisms causing Cryptorchidism cryptorchidism in rodents. In humans, prenatal exposure to potent estrogen diethylstilbestrol (DES) has Testis been associated with increased risk of cryptorchidism. In addition, epidemiological studies have sug- Endocrine disrupting chemical gested that exposure to pesticides may also be associated with cryptorchidism. Some case–control stud- ies analyzing environmental chemical levels in maternal breast milk samples have reported associations between cryptorchidism and chemical levels. Furthermore, it has been suggested that exposure levels of some chemicals may be associated with infant reproductive hormone levels. Ó 2011 Elsevier Ireland Ltd. All rights reserved. Contents 1. Background. -
Association Between CYP17A1, CYP19A1, and HSD17B1 Gene Polymorphisms in Hormone Synthesis Pathway with Ovarian Cancer Risk
Association between CYP17A1, CYP19A1, and HSD17B1 Gene Polymorphisms in Hormone Synthesis pathway with Ovarian Cancer Risk Gowtham Kumar G1, Andrea Francis1, Solomon Paul1, Chirag Molia1, Manickavasagam M1, Usha Rani1, Ramya R1, and Nalini Ganesan1 1Sri Ramachandra Institute of Higher Education and Research August 27, 2020 Abstract Objective: To investigate the polymorphisms of genes in the steroidogenesis pathway to understand the etiological mechanisms to OC risk in the South Indian population Design: Case-Control Study Setting and Sample: Ovarian cancer cases (200) and healthy individuals (200) from the South Indian population. Methods: All the cases and controls were genotyped for SNPs by using allelic discrimination assay. Main outcome measures: Genetic distribution of SNPs of Steroidogenesis pathway genes in the South Indian population. Results: The observed results for rs743752, the homozygous CC genotype revealed significant association (OR; 1.68; 95%CI, 1.25-2.26; p =<0.05) and the dominant model, recessive model and additive model showed a significant association with an OR of 1.62; 95%CI, 1.09 { 2.42; p = 0.015, OR of 0.29, 95%CI, 0.14 { 0.60; p = <0.001 and OR of 1.68, 95%CI, 1.25 { 2.26); p = <0.001 respectively in cases and controls for OC risk. In rs10046, the heterozygous CT genotype (OR; 1.61; 95%CI 1.06 { 2.43; p = 0.023), the dominant (OR; 1.65; 95%CI, 1.11 { 2.45; p = 0.012) and the additive (OR; 1.46; 95%CI, 1.07 - 1.98; p = 0.015) models were found to be statistically significant. -
KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations Xiaoni Liu1,2, Shang-Min Zhang1, Meaghan K
Published OnlineFirst December 6, 2018; DOI: 10.1158/1535-7163.MCT-18-0395 Cancer Biology and Translational Studies Molecular Cancer Therapeutics KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations Xiaoni Liu1,2, Shang-Min Zhang1, Meaghan K. McGeary1,2, Irina Krykbaeva1,2, Ling Lai3, Daniel J. Jansen4, Stephen C. Kales4, Anton Simeonov4, Matthew D. Hall4, Daniel P. Kelly3, Marcus W. Bosenberg1,2,5, and Qin Yan1 Abstract Tumor heterogeneity is a major challenge for cancer elevated KDM5B expression, melanoma cells shift toward a À treatment, especially due to the presence of various sub- more drug-tolerant, CD34 state upon exposure to BRAF populations with stem cell or progenitor cell properties. inhibitor or combined BRAF inhibitor and MEK inhibitor þ À þ In mouse melanomas, both CD34 p75 (CD34 )and treatment. KDM5B loss or inhibition shifts melanoma cells À À À þ CD34 p75 (CD34 ) tumor subpopulations were charac- to the more BRAF inhibitor–sensitive CD34 state. These terized as melanoma-propagating cells (MPC) that exhibit results support that KDM5B is a critical epigenetic regulator some of those key features. However, these two subpopula- that governs the transition of key MPC subpopulations tions differ from each other in tumorigenic potential, with distinct drug sensitivity. This study also emphasizes ability to recapitulate heterogeneity, and chemoresistance. the importance of continuing to advance our understand- þ À In this study, we demonstrate that CD34 and CD34 ing of intratumor heterogeneity and ultimately develop V600E subpopulations carrying the BRAF mutation confer novel therapeutics by altering the heterogeneous character- differential sensitivity to targeted BRAF inhibition. -
Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B
molecules Article Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B Simone Pippa 1, Cecilia Mannironi 2, Valerio Licursi 1,3, Luca Bombardi 1, Gianni Colotti 2, Enrico Cundari 2, Adriano Mollica 4, Antonio Coluccia 5 , Valentina Naccarato 5, Giuseppe La Regina 5 , Romano Silvestri 5 and Rodolfo Negri 1,2,* 1 Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (S.P.); [email protected] (V.L.); [email protected] (L.B.) 2 Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy; [email protected] (C.M.); [email protected] (G.C.); [email protected] (E.C.) 3 Institute for Systems Analysis and Computer Science “A. Ruberti”, Italian National Research Council, 00185 Rome, Italy 4 Department of Pharmacy, University “G. d’ Annunzio” of Chieti, Via dei Vestini 31, 66100 Chieti, Italy; [email protected] 5 Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (A.C.); [email protected] (V.N.); [email protected] (G.L.R.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +39-06-4991-7790 Academic Editors: Sergio Valente and Diego Muñoz-Torrero Received: 12 October 2018; Accepted: 1 May 2019; Published: 4 May 2019 Abstract: Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance. -
Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897 -
TOXIC EQUIVALENCY FACTORS for DIOXIN-LIKE Pcbs
Chemosphere, Vol. 28, No. 6, pp. 1049-1067, 1994 Perl~amon ELsevier Science Ltd Printed in Great Britain 0045-6535/94 $6.00+0.00 0045-6535(94)E0070-A TOXIC EQUIVALENCY FACTORS FOR DIOXIN-LIKE PCBs Report on a WHO-ECEH and IPCS consultation, December 1993 Ahlborg UG 1., Becking GC 2, Birnbaum LS 3, Brouwer A 4, Derks HJGM s, Feeley M6, Color G 7, Hanberg A 1, Larsen JC s, Liem AKD s, Safe SH9, Schlatter C 10, Wvern F 1, Younes M 11, Yrj~inheikki E 12 1 Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden 2IPCS/IRRU, Research Triangle Park, NC, USA; 3USEPA, Research Triangle Park, NC, USA; 4Agricultural University, Wageningen, The Netherlands; 5Nan Inst Publ Health and Environmental Protection, Bilthoven, The Netherlands; C~Iealth and Welfare Canada, Ottawa, Canada; 7Freie Universit~t Berlin, Bedin-Dahlem, Germany; 8National Food Agency, S~aorg, Denmark; 9Texas A & M University, College Station TX, USA; l°Swiss Federal Institute of Toxicology, Schwerzenbach, Ziirich, Switzerland; 11WHOEuropean Centre for Environment and Health, Bilthoven, The Netherlands; 12Occupational Safety and Health Division, Tampere, Finland (Received in Germany 10 February 1994; accepted 16 February 1994) ABSTRACT The WHO-European Centre for Environment and Health (WHO-ECEH) and the International Programme on Chemical Safety (IPCS), have initiated a project to create a data base containing information relevant to the setting of Toxic Equivalency Factors (TEFs), and, based on the available information, to assess the relative potencies and to derive consensus TEFs for PCDDs, PCDFs and dioxin-like PCBs. Available data on the relative toxicities of dioxin-like PCBs with respect to a number of endpoints were collected and analyzed. -
Hsd17b1) Inhibitor for Endometriosis
DEVELOPMENT OF HYDROXYSTEROID (17-BETA) DEHYDROGENASE TYPE 1 (HSD17B1) INHIBITOR FOR ENDOMETRIOSIS Niina Saarinen1,2, Tero Linnanen1, Jasmin Tiala1, Camilla Stjernschantz1, Leena Hirvelä1, Taija Heinosalo2, Bert Delvoux3, Andrea Romano3, Gabriele Möller4, Jerzy Adamski4, Matti Poutanen2, Pasi Koskimies1 1Forendo Pharma Ltd, Finland; 2Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Finland; 3Department of Obstetrics and Gynaecology; GROW, School for Oncology and Developmental Biology; Maastricht University Medical Centre, The Netherlands; 4Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Germany BACKGROUND OBJECTIVE Local activation of estrogens in endometriosis tissue The main objective of the present work was to assess is considered important for growth of the lesions. the preclinical efficacy of the novel HSD17B1 inhibitor, Hydroxysteroid (17-beta) dehydrogenase type 1 FOR-6219 (HSD17B1) is expressed in endometriosis tissue and converts the biologically low-active estrogen, estrone (E1), to the highly active estradiol (E2), while hydroxysteroid (17-beta) dehydrogenase type 2 (HSD17B2), catalyzes the opposite reaction. In contrast to eutopic endometrium, in endometriotic lesions the HSD17B1/HSD17B2 expression ratio is increased and E2 levels are higher than those of E1 throughout the menstrual cycle. Thus, inhibition of HSD17B1 is considered as a feasible strategy for lowering local E2 production in endometriosis. MAIN RESULTS FOR-6219 inhibits human HSD17B1 Ø FOR-6219 is a potent and FOR-6219 does not trigger estrogenic fully selective inhibitor of response in immature rat uterine human HSD17B1 over growth assay HSD17B2 Ø FOR-6219 does not bind to estrogen receptor α or β, and exhibits no estrogen-like response in immature rat uterotrophic assay Ø FOR-6219 inhibits HSD17B1 in cynomolgus monkey, dog and rabbit i.e. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Nuclear Receptors & Endocrine / Metabolic Disruption
NUCLEAR RECEPTORS & ENDOCRINE / METABOLIC DISRUPTION Jack Vanden Heuvel, INDIGO Biosciences Inc., State College, PA Table of Contents Overview............................................................................................................ 3 a. Endocrine Disruption ........................................................................... 3 b Metabolic Disruption ............................................................................. 3 A Common Molecular Mechanism for Endocrine Disruption and Metabolic Disruption ...................... 4 Example endocrine and metabolic disruptors .................................. 5 a. Pesticides ................................................................................................... 6 b. “Dioxins” .................................................................................................... 7 c. Organotins ................................................................................................ 8 d. Polyfluoroalkyl compounds .............................................................. 9 e. Brominated flame retardants ............................................................ 10 f. Alkylphenols .............................................................................................. 11 g. Bisphenol A .............................................................................................. 12 h. Phthalates ................................................................................................. 13 Endocrine and metabolic disruption: Mechanistic -
Targeting JARID1B's Demethylase Activity Blocks a Subset of Its Functions in Oral Cancer
www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 10), pp: 8985-8998 Research Paper Targeting JARID1B's demethylase activity blocks a subset of its functions in oral cancer Nicole D. Facompre1, Kayla M. Harmeyer1, Varun Sahu1, Phyllis A. Gimotty2, Anil K. Rustgi3, Hiroshi Nakagawa3 and Devraj Basu1,4,5 1Department of Otorhinolaryngology, Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA 2Department of Biostatistics Epidemiology and Informatics, The University of Pennsylvania, Philadelphia, PA, USA 3Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA 4Philadelphia VA Medical Center, Philadelphia, PA, USA 5The Wistar Institute, Philadelphia, PA, USA Correspondence to: Devraj Basu, email: [email protected] Keywords: oral cancer; JARID1B; cancer stem cells; E-cadherin Received: July 04, 2017 Accepted: October 13, 2017 Published: December 15, 2017 Copyright: Facompre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Upregulation of the H3K4me3 demethylase JARID1B is linked to acquisition of aggressive, stem cell-like features by many cancer types. However, the utility of emerging JARID1 family inhibitors remains uncertain, in part because JARID1B's functions in normal development and malignancy are diverse and highly context- specific. In this study, responses of oral squamous cell carcinomas (OSCCs) to catalytic inhibition of JARID1B were assessed using CPI-455, the first tool compound with true JARID1 family selectivity. CPI-455 attenuated clonal sphere and tumor formation by stem-like cells that highly express JARID1B while also depleting the CD44-positive and Aldefluor-high fractions conventionally used to designate OSCC stem cells. -
Emerging Role of Tumor Cell Plasticity in Modifying Therapeutic Response
Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Emerging role of tumor cell plasticity in modifying therapeutic response Siyuan Qin1, Jingwen Jiang1,YiLu 2,3, Edouard C. Nice4, Canhua Huang1,5, Jian Zhang2,3 and Weifeng He6,7 Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial–mesenchymal transition, acquisition properties of cancer stem cells, and trans- differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to -
Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl Michael F
www.nature.com/scientificreports OPEN Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl Michael F. Neblett II1*, Sarah W. Curtis2, Sabrina A. Gerkowicz1, Jessica B. Spencer1, Metrecia L. Terrell3, Victoria S. Jiang1, M. Elizabeth Marder4, Dana Boyd Barr4, Michele Marcus5 & Alicia K. Smith 6 In 1973, accidental contamination of Michigan livestock with polybrominated biphenyls (PBBs) led to the establishment of a registry of exposed individuals that have been followed for > 40 years. Besides being exposed to PBBs, this cohort has also been exposed to polychlorinated biphenyls (PCBs), a structurally similar class of environmental pollutants, at levels similar to average US exposure. In this study, we examined the association between current serum PCB and PBB levels and various female reproductive health outcomes to build upon previous work and inconsistencies. Participation in this cross-sectional study required a blood draw and completion of a detailed health questionnaire. Analysis included only female participants who had participated between 2012 and 2015 (N = 254). Multivariate linear and logistic regression models were used to identify associations between serum PCB and PBB levels with each gynecological and infertility outcome. Additionally, a generalized estimating equation (GEE) model was used to evaluate each pregnancy and birth outcome in order to account for multiple pregnancies per woman. We controlled for age, body mass index, and total lipid levels in all analyses. A p-value of <0.05 was used for statistical signifcance. Among the women who reported ever being pregnant, there was a signifcant negative association with higher total PCB levels associating with fewer lifetime pregnancies ( β = −0.11, 95% CI = −0.21 to −0.005, p = 0.04).