Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra AAA Part IB of the Mathematical Tripos of the University of Cambridge Michaelmas 2012 Linear Algebra Lectured by: Notes by: Prof. I. Grojnowski Alex Chan Comments and corrections should be sent to [email protected]. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The following resources are not endorsed by the University of Cambridge. Printed Friday, 11 January 2013. Course schedule Definition of a vector space (over R or C), subspaces, the space spanned by a subset. Linear independence, bases, dimension. Direct sums and complementary subspaces. [3] Linear maps, isomorphisms. Relation between rank and nullity. The space of linear maps from U to V , representation by matrices. Change of basis. Row rank and column rank. [4] Determinant and trace of a square matrix. Determinant of a product of two matrices and of the inverse matrix. Determinant of an endomorphism. The adjugate matrix. [3] Eigenvalues and eigenvectors. Diagonal and triangular forms. Characteristic and min- imal polynomials. Cayley-Hamilton Theorem over C. Algebraic and geometric multi- plicity of eigenvalues. Statement and illustration of Jordan normal form. [4] Dual of a finite-dimensional vector space, dual bases and maps. Matrix representation, rank and determinant of dual map. [2] Bilinear forms. Matrix representation, change of basis. Symmetric forms and their link with quadratic forms. Diagonalisation of quadratic forms. Law of inertia, classification by rank and signature. Complex Hermitian forms. [4] Inner product spaces, orthonormal sets, orthogonal projection, V = W ⊕ W ?. Gram- Schmidt orthogonalisation. Adjoints. Diagonalisation of Hermitian matrices. Orthogo- nality of eigenvectors and properties of eigenvalues. [4] Contents 1 Vector spaces 3 1.1 Definitions ................................... 3 1.2 Subspaces ................................... 5 1.3 Bases ..................................... 6 1.4 Linear maps and matrices .......................... 10 1.5 Conservation of dimension: the Rank-nullity theorem ........... 16 1.6 Sums and intersections of subspaces .................... 21 2 Endomorphisms 25 2.1 Determinants ................................. 25 3 Jordan normal form 35 3.1 Eigenvectors and eigenvalues ........................ 35 3.2 Cayley-Hamilton theorem .......................... 41 3.3 Combinatorics of nilpotent matrices .................... 45 3.4 Applications of JNF ............................. 48 4 Duals 51 5 Bilinear forms 55 5.1 Symmetric forms ............................... 57 5.2 Anti-symmetric forms ............................ 62 6 Hermitian forms 67 6.1 Inner product spaces ............................. 69 6.2 Hermitian adjoints for inner products ................... 72 3 1 Vector spaces 1.1 Definitions 5 Oct We start by fixing a field, F. We say that F is a field if: • F is an abelian group under an operation called addition, (+), with additive iden- tity 0; • Fnf0g is an abelian group under an operation called multiplication, (·), with mul- tiplicative identity 1; • Multiplication is distributive over addition; that is, a (b + c) = ab + ac for all a; b; c 2 F. R C Fields we’ve encountered before include the reals , the complexp numbersn p , the ringo of integers modulo p, Z=p = Fp, the rationals Q, as well as Q( 3 ) = a + b 3 : a; b 2 Q , ... Everything we will discuss works over any field, but it’s best to have R and C in mind, since that’s what we’re most familiar with. Definition. A vector space over F is a tuple (V; +; ·) consisting of a set V , opera- tions + : V × V ! V (vector addition) and · : F × V ! V (scalar multiplication) such that (i) (V; +) is an abelian group, that is: • Associative: for all v1; v2; v3 2 V , (v1 + v2) + v3 = v1 + (v2 + v3); • Commutative: for all v1; v2 2 V , v1 + v2 = v2 + v1; • Identity: there is some (unique) 0 2 V such that, for all v 2 V , 0 + v = v = v + 0; • Inverse: for all v 2 V , there is some u 2 V with u + v = v + u = 0. This inverse is unique, and often denoted −v. (ii) Scalar multipication satisfies • Associative: for all λ1; λ2 2 F, v 2 V , λ1 · (λ2 · v) = (λ1λ2) · v; • Identity: for all v 2 V , the unit 1 2 F acts by 1 · v = v; • · distributes over +V : for all λ 2 F, v1; v2 2 V , λ·(v1 + v2) = λ·v1+λ·v2; • +F distributes over ·: for all λ1; λ2 2 F, v 2 V , (λ1 + λ2)·v = λ1·v+λ2·v; We usually say “the vector space V ” rather than (V; +; ·). 4 j Linear Algebra Let’s look at some examples: Examples 1.1. (i) f0g is a vector space. (ii) Vectors in the plane under vector addition form a vector{ space. } n (iii) The space of n-tuples with entries in F, denoted F = (a1; : : : ; an) : ai 2 F with component-wise addition (a1; : : : ; an) + (b1; : : : ; bn) = (a1 + b1; : : : ; an + bn) and scalar multiplication λ · (a1; : : : ; an) = (λa1; : : : ; λan) Proving that this is a vector space is an exercise. It is also a special case of the next example. (iv) Let X be any set, and FX = ff : X ! Fg be the set of all functions X ! F. This is a vector space, with addition defined pointwise: (f + g)(x) = f(x) + g(x) and multiplication also defined pointwise: (λ · f)(x) = λf(x) if λ 2 F, f; g 2 FX , x 2 X. If X = f1; : : : ; ng, then FX = Fn and we have the previous example. Proof that FX is a vector space. • As + in F is commutative, we have (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x); so f + g = g + f. Similarly, f in F associative implies f + (g + h) = (f + g) + h, and that (−f)(x) = −f(x) and 0(x) = 0. • Axioms for scalar multiplication follow from the relationship between · and + in F. Check this yourself! (v) C is a vector space over R. Lemma 1.2. Let V be a vector space over F. (i) For all λ 2 F, λ · 0 = 0, and for all v 2 V , 0 · v = 0. (ii) Conversely, if λ · v = 0 and λ 2 F has λ =6 0, then v = 0. (iii) For all v 2 V , −1 · v = −v. Proof. (i) λ · 0 = λ · (0 + 0) = λ · 0 + λ · 0 =) λ · 0 = 0. 0 · v = (0 + 0) · v = 0 · v + 0 · v =) 0 · v = 0. (ii) As λ 2 F, λ =6 0, there exists λ−1 2 F such that λ−1λ = 1, so v = (λ−1λ) · v = λ−1 (λ · v), hence if λ · v = 0, we get v = λ−1 · 0 = 0 by (i). (iii) 0 = 0 · v = (1 + (−1)) · v = 1 · v + (−1 · v) = v + (−1 · v) =) −1 · v = −v. We will write λv rather than λ · v from now on, as the lemma means this will not cause any confusion. 5 1.2 Subspaces Definition. Let V be a vector space over F. A subset U ⊆ V is a vector subspace (or just a subspace), written U ≤ V , if the following holds: (i) 0 2 U; (ii) If u1; u2 2 U, then u1 + u2 2 U; (iii) If u 2 U, λ 2 F, then λu 2 U. Equivalently, U is a subspace if U ⊆ V , U =6 ; (U is non-empty) and for all u; v 2 U, λ, µ 2 F, λu + µv 2 U. Lemma 1.3. If V is a vector space over F and U ≤ V , then U is a vector space over F under the restriction of the operations + and · on V to U. (Proof is an exercise.) Examples 1.4. (i) f0g and V are always subspaces of V . n+m n+m (ii) f(r1; : : : ; rn; 0;:::; 0) : ri 2 Rg ⊆ R is a subspace of R . (iii) The following are all subspaces of sets of functions: { } C1(R) = f : R ! R j f continuous and differentiable { } ⊆ C(R) = f : R ! R j f continuous ⊆ RR = ff : R ! Rg : Proof. f; g continuous implies f + g is, and λf is, for λ 2 R; the zero function is continuous, so C(R) is a subspace of RR, similarly for C1(R). (iv) Let X be any set, and write { } X F[X] = (F )fin = f : X ! F j f(x) =6 0 for only finitely many x 2 X : This is the set of finitely supported functions, which is is a subspace of FX . X Proof that this is a subspace. f(x) = 0 =) λ f(x) = 0, so if f 2 (F )fin, then so is λf. Similarly, − (f + g) 1 (Fnf0g) ⊆ f −1(Fnf0g) [ g−1(Fnf0g) and if these two are finite, so is the LHS. Special case. Consider the case X = N, so { } N F[N] = (F )fin = (λ0; λ1;:::) j only finitely many λi are non-zero : We write xi for the function which sends i 7! 1, j 7! 0 if j =6 i; that is, for the tuple (0;:::; 0; 1; 0;:::) in the ith place. Thus {P } F[N] = λi j only finitely many λi non-zero : 6 j Linear Algebra Note that we can do better than a vector space here; we can define multipli- cation by (P )(P ) P i j i+j λi x µj x = λi µj · x : This is still in F[N]. It is more usual to denote this F[x], the polynomials in x over F (and this is a formal definition of the polynomial ring). 1.3 Bases 8 Oct Definition. Suppose V is a vector space over F, and S ⊆ V is a subset of V . Then v is a linear combination of elements of S if there is some n > 0 and λ1; : : : ; λn 2 F, v1; : : : ; vn 2 S such that v = λ1v1 + ··· + λnvn or if v = 0.
Recommended publications
  • On the Bicoset of a Bivector Space
    International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties.
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Linear Algebra: Example Sheet 2 of 4
    Michaelmas Term 2014 SJW Linear Algebra: Example Sheet 2 of 4 1. (Another proof of the row rank column rank equality.) Let A be an m × n matrix of (column) rank r. Show that r is the least integer for which A factorises as A = BC with B 2 Matm;r(F) and C 2 Matr;n(F). Using the fact that (BC)T = CT BT , deduce that the (column) rank of AT equals r. 2. Write down the three types of elementary matrices and find their inverses. Show that an n × n matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of 0 1 −1 0 1 @ 0 0 1 A : 0 3 −1 3. Let A and B be n × n matrices over a field F . Show that the 2n × 2n matrix IB IB C = can be transformed into D = −A 0 0 AB by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that det AB = det A det B. 4. (i) Let V be a non-trivial real vector space of finite dimension. Show that there are no endomorphisms α; β of V with αβ − βα = idV . (ii) Let V be the space of infinitely differentiable functions R ! R. Find endomorphisms α; β of V which do satisfy αβ − βα = idV . 5. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices: 0 1 1 0 1 0 1 1 −1 1 0 1 1 −1 1 @ 0 3 −2 A ; @ 0 3 −2 A ; @ −1 3 −1 A : 0 1 0 0 1 0 −1 1 1 The second and third matrices commute; find a basis with respect to which they are both diagonal.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Linear Algebra Review James Chuang
    Linear algebra review James Chuang December 15, 2016 Contents 2.1 vector-vector products ............................................... 1 2.2 matrix-vector products ............................................... 2 2.3 matrix-matrix products ............................................... 4 3.2 the transpose .................................................... 5 3.3 symmetric matrices ................................................. 5 3.4 the trace ....................................................... 6 3.5 norms ........................................................ 6 3.6 linear independence and rank ............................................ 7 3.7 the inverse ...................................................... 7 3.8 orthogonal matrices ................................................. 8 3.9 range and nullspace of a matrix ........................................... 8 3.10 the determinant ................................................... 9 3.11 quadratic forms and positive semidefinite matrices ................................ 10 3.12 eigenvalues and eigenvectors ........................................... 11 3.13 eigenvalues and eigenvectors of symmetric matrices ............................... 12 4.1 the gradient ..................................................... 13 4.2 the Hessian ..................................................... 14 4.3 gradients and hessians of linear and quadratic functions ............................. 15 4.5 gradients of the determinant ............................................ 16 4.6 eigenvalues
    [Show full text]
  • Geometric Engineering of (Framed) Bps States
    GEOMETRIC ENGINEERING OF (FRAMED) BPS STATES WU-YEN CHUANG1, DUILIU-EMANUEL DIACONESCU2, JAN MANSCHOT3;4, GREGORY W. MOORE5, YAN SOIBELMAN6 Abstract. BPS quivers for N = 2 SU(N) gauge theories are derived via geometric engineering from derived categories of toric Calabi-Yau threefolds. While the outcome is in agreement of previous low energy constructions, the geometric approach leads to several new results. An absence of walls conjecture is formulated for all values of N, relating the field theory BPS spectrum to large radius D-brane bound states. Supporting evidence is presented as explicit computations of BPS degeneracies in some examples. These computations also prove the existence of BPS states of arbitrarily high spin and infinitely many marginal stability walls at weak coupling. Moreover, framed quiver models for framed BPS states are naturally derived from this formalism, as well as a mathematical formulation of framed and unframed BPS degeneracies in terms of motivic and cohomological Donaldson-Thomas invariants. We verify the conjectured absence of BPS states with \exotic" SU(2)R quantum numbers using motivic DT invariants. This application is based in particular on a complete recursive algorithm which determines the unframed BPS spectrum at any point on the Coulomb branch in terms of noncommutative Donaldson- Thomas invariants for framed quiver representations. Contents 1. Introduction 2 1.1. A (short) summary for mathematicians 7 1.2. BPS categories and mirror symmetry 9 2. Geometric engineering, exceptional collections, and quivers 11 2.1. Exceptional collections and fractional branes 14 2.2. Orbifold quivers 18 2.3. Field theory limit A 19 2.4.
    [Show full text]
  • A New Algorithm to Obtain the Adjugate Matrix Using CUBLAS on GPU González, H.E., Carmona, L., J.J
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 4, October 2017 A New Algorithm to Obtain the Adjugate Matrix using CUBLAS on GPU González, H.E., Carmona, L., J.J. Information Technology Department, ININ-ITTLA Information Technology Department, ININ proved to be the best option for most practical applications. Abstract— In this paper a parallel code for obtain the Adjugate The new transformation proposed here can be obtained from Matrix with real coefficients are used. We postulate a new linear it. Next, we briefly review this topic. transformation in matrix product form and we apply this linear transformation to an augmented matrix (A|I) by means of both a minimum and a complete pivoting strategies, then we obtain the II. LU-MATRICIAL DECOMPOSITION WITH GT. Adjugate matrix. Furthermore, if we apply this new linear NOTATION AND DEFINITIONS transformation and the above pivot strategy to a augmented The problem of solving a linear system of equations matrix (A|b), we obtain a Cramer’s solution of the linear system of Ax b is central to the field of matrix computation. There are equations. That new algorithm present an O n3 computational several ways to perform the elimination process necessary for complexity when n . We use subroutines of CUBLAS 2nd A, b R its matrix triangulation. We will focus on the Doolittle-Gauss rd and 3 levels in double precision and we obtain correct numeric elimination method: the algorithm of choice when A is square, results. dense, and un-structured. nxn Index Terms—Adjoint matrix, Adjugate matrix, Cramer’s Let us assume that AR is nonsingular and that we rule, CUBLAS, GPU.
    [Show full text]
  • Field of U-Invariants of Adjoint Representation of the Group GL (N, K)
    Field of U-invariants of adjoint representation of the group GL(n,K) K.A.Vyatkina A.N.Panov ∗ It is known that the field of invariants of an arbitrary unitriangular group is rational (see [1]). In this paper for adjoint representation of the group GL(n,K) we present the algebraically system of generators of the field of U-invariants. Note that the algorithm for calculating generators of the field of invariants of an arbitrary rational representation of an unipotent group was presented in [2, Chapter 1]. The invariants was constructed using induction on the length of Jordan-H¨older series. In our case the length is equal to n2; that is why it is difficult to apply the algorithm. −1 Let us consider the adjoint representation AdgA = gAg of the group GL(n,K), where K is a field of zero characteristic, on the algebra of matri- ces M = Mat(n,K). The adjoint representation determines the representation −1 ρg on K[M] (resp. K(M)) by formula ρgf(A)= f(g Ag). Let U be the subgroup of upper triangular matrices in GL(n,K) with units on the diagonal. A polynomial (rational function) f on M is called an U- invariant, if ρuf = f for every u ∈ U. The set of U-invariant rational functions K(M)U is a subfield of K(M). Let {xi,j} be a system of standard coordinate functions on M. Construct a X X∗ ∗ X X∗ X∗ X matrix = (xij). Let = (xij) be its adjugate matrix, · = · = det X · E. Denote by Jk the left lower corner minor of order k of the matrix X.
    [Show full text]
  • Review a Basis of a Vector Space 1
    Review • Vectors v1 , , v p are linearly dependent if x1 v1 + x2 v2 + + x pv p = 0, and not all the coefficients are zero. • The columns of A are linearly independent each column of A contains a pivot. 1 1 − 1 • Are the vectors 1 , 2 , 1 independent? 1 3 3 1 1 − 1 1 1 − 1 1 1 − 1 1 2 1 0 1 2 0 1 2 1 3 3 0 2 4 0 0 0 So: no, they are dependent! (Coeff’s x3 = 1 , x2 = − 2, x1 = 3) • Any set of 11 vectors in R10 is linearly dependent. A basis of a vector space Definition 1. A set of vectors { v1 , , v p } in V is a basis of V if • V = span{ v1 , , v p} , and • the vectors v1 , , v p are linearly independent. In other words, { v1 , , vp } in V is a basis of V if and only if every vector w in V can be uniquely expressed as w = c1 v1 + + cpvp. 1 0 0 Example 2. Let e = 0 , e = 1 , e = 0 . 1 2 3 0 0 1 3 Show that { e 1 , e 2 , e 3} is a basis of R . It is called the standard basis. Solution. 3 • Clearly, span{ e 1 , e 2 , e 3} = R . • { e 1 , e 2 , e 3} are independent, because 1 0 0 0 1 0 0 0 1 has a pivot in each column. Definition 3. V is said to have dimension p if it has a basis consisting of p vectors. Armin Straub 1 [email protected] This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.
    [Show full text]
  • Formalizing the Matrix Inversion Based on the Adjugate Matrix in HOL4 Liming Li, Zhiping Shi, Yong Guan, Jie Zhang, Hongxing Wei
    Formalizing the Matrix Inversion Based on the Adjugate Matrix in HOL4 Liming Li, Zhiping Shi, Yong Guan, Jie Zhang, Hongxing Wei To cite this version: Liming Li, Zhiping Shi, Yong Guan, Jie Zhang, Hongxing Wei. Formalizing the Matrix Inversion Based on the Adjugate Matrix in HOL4. 8th International Conference on Intelligent Information Processing (IIP), Oct 2014, Hangzhou, China. pp.178-186, 10.1007/978-3-662-44980-6_20. hal-01383331 HAL Id: hal-01383331 https://hal.inria.fr/hal-01383331 Submitted on 18 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Formalizing the Matrix Inversion Based on the Adjugate Matrix in HOL4 Liming LI1, Zhiping SHI1?, Yong GUAN1, Jie ZHANG2, and Hongxing WEI3 1 Beijing Key Laboratory of Electronic System Reliability Technology, Capital Normal University, Beijing 100048, China [email protected], [email protected] 2 College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China 3 School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China Abstract. This paper presents the formalization of the matrix inversion based on the adjugate matrix in the HOL4 system.
    [Show full text]