Progesterone with the Muscarinic System

Total Page:16

File Type:pdf, Size:1020Kb

Progesterone with the Muscarinic System Proc. NatL Acad. Sci. USA Vol. 78, No. 9, pp. 5554-5558, September 1981 Biochemistry Molecular regulation of receptors: Interaction of (3-estradiol and progesterone with the muscarinic system (cholinergic receptor/sex hormone/receptor communication) MORDECHAI SOKOLOVSKY*, YAACOV EGOZI, AND SOFIA AvIssAR Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel Communicated by Alton Meister, June 18, 1981 ABSTRACT The effects of various substrates on the binding MATERIALS AND METHODS of agonists to muscarinic receptors were studied in the rat hypo- thalamus and adenohypophysis by competition experiments using Materials. 3H-Labeled N-methyl-4-piperidyl benzilate the highly specific tritiated muscarinic antagonist N-methyl-4-pi- ([3H]4NMPB) (68.7 Ci/mmol; 1 Ci = 3.7 x 10's becquerels) peridyl benzilate. It was found that agonist binding properties was prepared by catalytic tritium exchange as described (3). Its were affected only by the steroid sex hormones (1-estradiol and purity was >97%. Other compounds used were oxotremorine progesterone), both of which resulted in a decrease in the pro- from Aldrich; atropine sulfate, 17p-estradiol, progesterone, portion of high-affinity binding sites and a decrease in the disso- acid, and cyclic ciation constant. This suggests a link between the muscarinic sys- cholesterol, corticosterone, y-amino-n-butyric tem and the mechanism by which these steroids exert their AMP and cyclic GMP from Sigma; D-Ala2-Met5-enkephalin gonadotropin-releasing effect on the adenohypophysis. We pro- from UCN, Belgium; and gonadotropin-releasinghormone gen- pose a model to depict the putative relationship between the mus- erously donated by Aliza Eshkol. All compounds were of the carinic system and other receptor systems, including that which best grade available. controls the steroid sex hormones. Animals. Adult male and female rats of the CD strain were supplied by Levinstein's Farm (Yokneam) and maintained in an In a recent study, we demonstrated the presence ofmuscarinic air-conditioned room at 24 + 20C for 14 hr under fluorescent receptors in the rat adenohypophysis and described their bio- illumination (0500-1900 hr) and in darkness for 10 hr daily. chemical characteristics (1). Our results showed that (i) in con- Food from Assia Maabarot Ltd. and water were supplied ad lib. trast to other brain regions, antagonist binding was heteroge- After an adjustment period of at least 4 weeks, daily vaginal neous in this area, with the existence ofat least two subclasses smears were taken of all female rats, and only those having a ofsites; (ii) agonist binding is characterized by a two-site model regular 4-day estrous cycle were used. The rats were then 3 to specifying a high and a low affinity state; and (iii) the female rat 4 months old and weighed 190-250 g. They were decapitated is characterized during the proestrous stage by a lower degree and theirbrains were rapidly removed, and the brain areas were ofagonist high-affinity binding and by an increase (almost dou- dissected out in a cold room, after identification with the aid ble) in the proportion ofhigh-affinity sites in comparison with of ref. 4. female rats at other stages of the cycle and with male rats. Pi- Binding Assays. Full details concerning homogenate prep- tuitary responsiveness to muscarinic binding therefore fluc- aration and antagonist binding assay techniques using the fil- tuates during the estrous cycle. It is significant that we detected tration method for the brain areas investigated and the cen- (2) similar features in the characteristics of agonist binding to trifligation method for the adenohypophysis, are described muscarinic receptors in the preoptic area (which houses the elsewhere (1, 2, 5). The fact that the ligand-muscarinic receptor biological clock regulating hormone release)-i.e., the popu- complex dissociates much more rapidly in the adenohypophysis lation of agonist high-affinity sites at the proestrous stage was than in other brain regions creates difficulties with the filtration much higher than at other stages of the estrous cycle (66% vs. technique; therefore, the centrifugation method was used for 38%). In vivo endocrinic manipulations of the estrous cycle at the adenohypophysis. Binding of [3H]4NMPB that was inhib- the estrogenic level, such as ovariectomy ofadult cyclic females ited by 5 ,uM of unlabeled atropine was considered to be or androgenization of newborn females, were reflected by al- specific. terations in the muscarinic system at the adenohypophysis (un- Binding ofagonists in the absence or presence ofthe various published data). These results suggest that the muscarinic re- substrates tested was inferred by their ability to compete with ceptors play apart in the positive or negative (orboth) regulation specific binding of 2.0 nM [3H]4NMPB (1, 2, 6). of estrogens on sex hormone secretion. Data Analysis. The data obtained from direct binding assays To investigate this possibility, we have studied the mecha- with the antagonist were analyzed by a nonlinear least-squares nism of fluctuation of pituitary muscarinic responsiveness by curve-fitting procedure using a generalized model for complex of a number of noncholi- ligand-receptor systems as described (1, 2). Computer analysis examining the effects endogenous indicated that binding ofantagonists was best explained by two nergic substrates, including steroids, on in vitro binding mech- total anisms of both agonist and antagonist to these muscarinic re- affinity sites of the receptor (1); 29% of the receptor pop- The effects ofthe substrates were in male and ulation in the proestrous stage is ofhigh affinity (63 + 5 fmol/ ceptors. analyzed mg ofprotein) with a Kd of 1.1 ± 0.03 nM and 74% is oflower proestrous female rats, as the sex dimorphism ofthe muscarinic 11.3 ± 0.1 is then affinity (155 + 10 fmol/mg ofprotein) with a Kd of characteristics apparent (1, 2). nM. The inhibition curves were obtained at 2 nM [3H]4NMPB using an average value ofthe two dissociation constants for the The publication costs ofthis article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertise- ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact. Abbreviation: [3H14NMPB, 3H-labeled N-methyl4-piperidyl benzilate. 5554 Downloaded by guest on October 2, 2021 Biochemistry: Sokolovsky et at Proc. NatL Acad. Sci. USA 78 (1981) 5555 analysis as discussed in ref. 1. Theoretical. competition curv'es a ,8estradiol concentration of 5 ng/ml, an increase in affinity were fitted to the experimental data points by using the non- was apparent at a concentration of0.5 ng/ml. linear least-squares regression computer program BMDPAR Similar effects on agonist binding in the female adenohy.- (November 1978 revision) as described (7, 8). (The program was pophysis could be induced by progesterone and cortisol (Table developed at the Health Science Computing. Facility of the 1). It is worth noting that these effects were already seen at University of California, Los Angeles; the facility is sponsored 25-50 ng/ml, which was within the physiological range ofthese by National Institutes of Health Special Research Resources steroids (10). Unlike P-estradiol, however, these two substrates Grant RR-3). Agonist. binding parameters were evaluated sta- had no detectable effect on male adenohypophysis (Table 1). tistically by using Student's t test. No effects of,estradiol; progesterone, or cortisol were ob- served in other brain regions investigated, such as the cortex, RESULTS medulla-pons, median, and posterior hypothalamus (not shown). A large number ofendogenous substrates were tested for pos- Interestingly, in the preoptic area offemales but not of males, sible effects on the cholinergic muscarinic system in the ade- although neither (3estradiol. nor cortisol had any effect, pro- nohypophysis. Competition experiments were carried out in gesterone influenced oxotermorine binding in a manner similar the presence and absence ofthe following: 0.1 mM cyclic AMP, to its effect on the pituitary (Table 2). Here again, a significant 0.1 mM cyclic GMP, luteinizing hormone-releasing hormone decrease in the population. ofhigh-affinity sites (a = 23 ± 3% at 10 ng/ml, thyrotropin-releasing hormone at 10 ng/ml, 10 AM vs. a = 67 + 7% in control proestrous females) was accom- D-Ala2-Met5-enkephalin, 0.1 mM a-aminobutyric acid, choles- panied by an increase in the high-affinity dissociation constant terol at 50 ng/ml, cortisol at 50 ng/ml, f-estradiol at 0.1-50 ng/ (KH = 4.5 + 0.6 nM vs. KH = 27.2 + 0.4 nM in control.proes- ml, and progesterone at 25 ng/ml. The binding characteristics trous females). of the highly specific muscarinic antagonist [ H]4NMPB re- Cholesterol had no observable effect on muscarinic agonist mained unchanged in the presence and absence ofeach ofthese parameters in either the pituitary or the preoptic area. agents (data not shown). Agonist binding characteristics, on the other hand, did show changes, but only in the presence of,the DISCUSSION steroid substrates. Fig. 1A shows Scatchard plots ofcompetition The effect of steroids on agonist binding, as shown in. compe- experiments between 2 nM [3H]4NMPB and various concen- tition binding studies using oxotremorine and carbamoylcholine trations ofthe agonist oxotremorine in the presence and absence (data not shown) as muscarinic agonists, indicates tissue spec- of 70 nM (50 ng/ml) P-estradiol; a marked effect on the-binding ificity-i.e., the effect is seen only in the pituitary and preoptic parameters in the presence of f-estradiol can be seen for both areas and not in the median or posterior hypothalamus, cortex, female and male adenohypophyses (Table 1). In Fig. 1B, on.the or medulla-pons. Furthermore, the effect, which is character- other hand, in which antagonist binding is shown, no such effect ized by a marked decrease in the proportion of agonist high- is observed.
Recommended publications
  • I LITERATURE-BASED DISCOVERY of KNOWN and POTENTIAL NEW
    LITERATURE-BASED DISCOVERY OF KNOWN AND POTENTIAL NEW MECHANISMS FOR RELATING THE STATUS OF CHOLESTEROL TO THE PROGRESSION OF BREAST CANCER BY YU WANG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics with a concentration in Library and Information Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Adviser: Professor Vetle I. Torvik Professor Erik Russell Nelson i ABSTRACT Breast cancer has been studied for a long period of time and from a variety of perspectives in order to understand its pathogeny. The pathogeny of breast cancer can be classified into two groups: hereditary and spontaneous. Although cancer in general is considered a genetic disease, spontaneous factors are responsible for most of the pathogeny of breast cancer. In other words, breast cancer is more likely to be caused and deteriorated by the dysfunction of a physical molecule than be caused by germline mutation directly. Interestingly, cholesterol, as one of those molecules, has been discovered to correlate with breast cancer risk. However, the mechanisms of how cholesterol helps breast cancer progression are not thoroughly understood. As a result, this study aims to study known and discover potential new mechanisms regarding to the correlation of cholesterol and breast cancer progression using literature review and literature-based discovery. The known mechanisms are further classified into four groups: cholesterol membrane content, transport of cholesterol, cholesterol metabolites, and other. The potential mechanisms, which are intended to provide potential new treatments, have been identified and checked for feasibility by an expert.
    [Show full text]
  • Biomedicines
    biomedicines Article The Fabp4-Cre-Model is Insufficient to Study Hoxc9 Function in Adipose Tissue Sebastian Dommel 1,*, Claudia Berger 1 , Anne Kunath 1, Matthias Kern 1, Martin Gericke 2,3, Peter Kovacs 1 , Esther Guiu-Jurado 1, Nora Klöting 1,4 and Matthias Blüher 1,4,* 1 Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, D-04103 Leipzig, Germany; [email protected] (C.B.); [email protected] (A.K.); [email protected] (M.K.); [email protected] (P.K.); [email protected] (E.G.-J.); [email protected] (N.K.) 2 Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany; [email protected] 3 Institute of Anatomy and Cell Biology, Martin-Luther-University, D-06108 Halle (Saale), Germany 4 Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig University, D-04103 Leipzig, Germany * Correspondence: [email protected] (S.D.); [email protected] (M.B.); Tel.: +49-341-9713400 (S.D.); +49-341-9715984 (M.B.) Received: 18 May 2020; Accepted: 26 June 2020; Published: 29 June 2020 Abstract: Developmental genes are important regulators of fat distribution and adipose tissue (AT) function. In humans, the expression of homeobox c9 (HOXC9) is significantly higher in subcutaneous compared to omental AT and correlates with body fat mass. To gain more mechanistic insights into the role of Hoxc9 in AT, we generated Fabp4-Cre-mediated Hoxc9 knockout mice (ATHoxc9-/-).
    [Show full text]
  • Association Between Non-Coding Polymorphisms of HOPX Gene and Syncope in Hypertrophic Cardiomyopathy
    Original Investigation 617 Association between non-coding polymorphisms of HOPX gene and syncope in hypertrophic cardiomyopathy Çağrı Güleç, Neslihan Abacı, Fatih Bayrak1, Evrim Kömürcü Bayrak, Gökhan Kahveci2, Celal Güven3, Nihan Erginel Ünaltuna Department of Genetics Institute for Experimental Medicine (DETAE), İstanbul University; İstanbul-Turkey 1Department of Cardiology, Faculty of Medicine, Acıbadem University; İstanbul-Turkey 2Clinic of Cardiology, Koşuyolu Kartal Heart Training and Research Hospital; İstanbul-Turkey 3Department of Biophysics, Faculty of Medicine, Adıyaman University; Adıyaman-Turkey ABSTRACT Objective: Homeodomain Only Protein X (HOPX) is an unusual homeodomain protein which regulates Serum Response Factor (SRF) dependent gene expression. Due to the regulatory role of HOPX on SRF activity and the regulatory role of SRF on cardiac hypertrophy, we aimed to inves- tigate the relationship between HOPX gene variations and hypertrophic cardiomyopathy (HCM). Methods: In this study, designed as a case-control study, we analyzed coding and flanking non-coding regions of the HOPX gene through 67 patients with HCM and 31 healty subjects. Certain regions of the gene were investigated by Single Stranded Conformation Polymorphism (SSCP) and Restriction Fragment Length Polymorphism (RFLP). Statistical analyses of genotypes and their relationship with clinical parameters were performed by chi-square, Kruskal-Wallis and the Fisher’s exact test. Results: In 5’ Untranslated Region (UTR) and intronic region of the HOPX gene, we found a C>T substitution and an 8-bp insertion/deletion (In/ Del) polymorphism, respectively. These two polymorphisms seemed to constitute an haplotype. While the frequency of homozygous genotypes of In/Del and C/T polymorphisms were found significantly lower in the patients with syncope (p=0.014 and p=0.017, respectively), frequency of their heterozygous genotypes were found significantly higher in the patients with syncope (p=0.048 and p=0.030, respectively).
    [Show full text]
  • Accepted Manuscript
    The role of sex and sex Hormones in Neurodegenerative Diseases Elisabetta Vegeto, Alessandro Villa, Sara Della Torre, Valeria Crippa, Paola Rusmini, Riccardo Cristofani, Mariarita Galbiati, Adriana Maggi*, Angelo Poletti* Downloaded from https://academic.oup.com/edrv/advance-article-abstract/doi/10.1210/endrev/bnz005/5572525 by guest on 22 October 2019 Department of Excellence of Pharmacological and Biomolecular Sciences and Center of Excellence on Neurodegenerative Diseases Università degli Studi di Milano, Italy Key terms: Sex Hormones, Alzheimer’s disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, Spinal and Bulbar Muscular Atrophy *These Authors equally contributed to this manuscript Corresponding author's contact information: Angelo Poletti, PhD - Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases. Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy. Ph. +390250318215; Fax +390250318204; e-mail [email protected] Disclosure statement. The Authors have no item to disclose Grants: National Institute of Health Grant RO1AG027713; European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 278850 (INMiND); Fondazione Cariplo, Italy (2011-0591, 2014-0686 and 2017_0747); Fondazione Telethon, Italy (n. GGP14039, GGP19218); Fondazione AriSLA, Italy (ALS_HSPB8, ALS_Granulopathy, MLOpathy, Target_RAN), Italian Ministry of Health (n. GR-2011-02347198), Agenzia Italiana del Farmaco (AIFA) (Co_ALS), Italian Ministry of University and Research (MIUR), PRIN - Progetti di ricerca di interesse nazionale (n. 2015LFPNMN and 2017F2A2C5), MIUR progetto di eccellenza, Fondo per il Finanziamento delle Attività Base di Ricerca (FFABR-MIUR), Fondazione Regionale per la RicercaAccepted Biomedica (FRRB) (Regione Lombardia, Manuscript TRANS_ALS, project nr. 2015-0023), Università degli Studi di Milano e piano di sviluppo UNIMI - linea B, European Molecular Biology Organization (EMBO) short term fellowship (n.
    [Show full text]
  • Gender Differences in T Cell Regulation and Responses to Sex Hormones
    Gender differences in T cell regulation and responses to sex hormones By FARRAH Z. ALI A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Immunity and Infection College of Medical and Dental Sciences The University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Conflicting effects of sex hormones on the immune system could potentially explain the increased susceptibility of females to autoimmune diseases. In this study, I wanted to explore the regulation of the response to sex hormones in T cells from male and female donors. We initially investigated the levels of gene expression for sex hormone receptors and sex hormone metabolising enzymes in CD45RA+ /CD4+ T cells from male and female donors at baseline and after in vitro stimulation. I found that expression of 5α-reductase 1, an enzyme which converts testosterone into the more active dihydrotestosterone (DHT), is upregulated both on the mRNA and protein level in T cells from female but not male donors after stimulation. Since androgens are generally thought to have an anti-inflammatory role, this may be a mechanism that regulates the exposure of stimulated T cells to the inhibitory influence of DHT.
    [Show full text]
  • Novel Insights on Imaging Sex Hormone-Dependent Tumourigenesis in Vivo
    Endocrine-Related Cancer (2011) 18 R41–R51 REVIEW Novel insights on imaging sex hormone-dependent tumourigenesis in vivo Balaji Ramachandran, Alessia Stell, Luca Maravigna, Adriana Maggi and Paolo Ciana Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Via Balzaretti, 9 I-20123 Milan, Italy (Correspondence should be addressed to P Ciana; Email: [email protected]) Abstract Sex hormones modulate proliferation, apoptosis, migration, metastasis and angiogenesis in cancer cells influencing tumourigenesis from the early hyperplastic growth till the end-stage metastasis. Although decades of studies have detailed these effects at the level of molecular pathways, where and when these actions are needed for the growth and progression of hormone- dependent neoplasia is poorly elucidated. Investigation of the hormone influences in carcinogenesis in the spatio-temporal dimension is expected to unravel critical steps in tumour progression and in the onset of resistance to hormone therapies. Non-invasive in vivo imaging represents a powerful tool to follow in time hormone signalling in the whole body during tumour development. This review summarizes the tools currently available to follow hormone action in living organisms. Endocrine-Related Cancer (2011) 18 R41–R51 Introduction (Hanahan & Weinberg 2000). In hormone-related carcinogenesis, endogenous and exogenous hormones Neoplastic transformation is a highly regulated and influence a multiplicity of cell functions. Dysregula- ordered process, where a sequela of biological events tion of sex hormone-receptor signalling occurs in the leads cancer cells to acquire specific phenotypic traits tumourigenesis of breast, endometrial, ovary, prostate necessary to escape the strong selective pressure of and testis, where oestrogens, progestin and androgens the host tumour surveillance (Merlo et al.
    [Show full text]
  • Ameya Bendre – Regulation of Bone Formation and Post-Natal Skeletal
    ANNALES UNIVERSITATIS TURKUENSIS ANNALES UNIVERSITATIS D 1302 Ameya Bendre REGULATION OF BONE FORMATION AND POST NATAL SKELETAL HOMEOSTASIS – NOVEL ROLE OF FAM3C AND OSTEOBLAST SPECIFIC DICER1 Ameya Bendre Painosalama Oy, Turku , Finland 2017 Turku Painosalama Oy, ISBN 978-951-29-6944-9 (PRINT) ISBN 978-951-29-6945-6 (PDF) TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS ISSN 0355-9483 (PRINT) | ISSN 2343-3213 (PDF) Sarja - ser. D osa - tom. 1302 | Medica - Odontologica | Turku 2017 REGULATION OF BONE FORMATION AND POST NATAL SKELETAL HOMEOSTASIS – NOVEL ROLE OF FAM3C AND OSTEOBLAST SPECIFIC DICER1 Ameya Bendre TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1302 | Medica - Odontologica | Turku 2017 University of Turku Faculty of Medicine Institute of Biomedicine, Cell Biology and Anatomy Turku Doctoral Programme of Molecular Medicine Supervised by Adjunct Professor Jorma Määttä, Ph.D. Institute of Biomedicine University of Turku Turku, Finland Reviewed by Adjunct Professor Joonas Sirola, M.D., Ph.D. Professor Mikko Lammi, Ph.D. Department of Orthopaedics, Traumatology Department of Integrative Medical Biology and Hand Surgery, Umeå University, Umeå, Sweden. Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland. Opponent Professor Juha Tuukkanen, DDS., Ph.D. Department of Anatomy and Cell Biology Institute of Cancer Research and Translational Medicine University of Oulu, Oulu, Finland. The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-6944-9 (PRINT) ISBN 978-951-29-6945-6 (PDF) ISSN 0355-9483 (PRINT) ISSN 2343-3213 (PDF) Painosalama Oy – Turku, Finland 2017 To my Family 4 Tiivistelmä Ameya Bendre: Regulation of bone formation and post-natal skeletal homeostasis – Novel role of Fam3c and osteoblast specific Dicer1.
    [Show full text]
  • Accepted Manuscript
    The role of sex and sex Hormones in Neurodegenerative Diseases Downloaded from https://academic.oup.com/edrv/advance-article-abstract/doi/10.1210/endrev/bnz005/5572525 by Università degli Studi di Milano user on 24 September 2019 September on 24 user Milano di Studi degli by Università https://academic.oup.com/edrv/advance-article-abstract/doi/10.1210/endrev/bnz005/5572525 from Downloaded Elisabetta Vegeto, Alessandro Villa, Sara Della Torre, Valeria Crippa, Paola Rusmini, Riccardo Cristofani, Mariarita Galbiati, Adriana Maggi*, Angelo Poletti* Department of Excellence of Pharmacological and Biomolecular Sciences and Center of Excellence on Neurodegenerative Diseases Università degli Studi di Milano, Italy Key terms: Sex Hormones, Alzheimer’s disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, Spinal and Bulbar Muscular Atrophy *These Authors equally contributed to this manuscript Corresponding author's contact information: Angelo Poletti, PhD - Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases. Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy. Ph. +390250318215; Fax +390250318204; e-mail [email protected] Disclosure statement. The Authors have no item to disclose Grants: National Institute of Health Grant RO1AG027713; European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 278850 (INMiND); Fondazione Cariplo, Italy (2011-0591, 2014-0686 and 2017_0747); Fondazione Telethon, Italy (n. GGP14039, GGP19218); Fondazione AriSLA, Italy (ALS_HSPB8, ALS_Granulopathy, MLOpathy, Target_RAN), Italian Ministry of Health (n. GR-2011-02347198), Agenzia Italiana del Farmaco (AIFA) (Co_ALS), Italian Ministry of University and Research (MIUR), PRIN - Progetti di ricerca di interesse nazionale (n. 2015LFPNMN and 2017F2A2C5), MIUR progetto di eccellenza, Fondo per il Finanziamento delle Attività Base di Ricerca (FFABR-MIUR), Fondazione Regionale per la RicercaAccepted Biomedica (FRRB) (Regione Lombardia, Manuscript TRANS_ALS, project nr.
    [Show full text]
  • Expression of Oestrogen and Progesterone Receptors in Gastric
    British Journal of Cancer (1999) 80(8), 1271–1274 © 1999 Cancer Research Campaign Article no. bjoc.1999.0497 Expression of oestrogen and progesterone receptors in gastric cancer: a flow cytometric study D Karat1, I Brotherick2, BK Shenton2, D Scott1, SA Raimes1 and SM Griffin1 1Northern Oesophagogastric Cancer Unit, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK; 2Department of Surgery, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK Summary Increased expression of oestrogen (ER) and progesterone (PR) receptors have been reported in gastric adenocarcinoma, although results have been variable. Immunohistochemical staining methodologies, in particular in the detection of ER, have been inconsistent with many tumours being classified ER-negative. In this study we have used flow cytometry to quantify expression of ER and PR in gastric adenocarcinoma and examine their relationships with established prognostic indicators. Cytokeratin-positive cells obtained from tumour biopsies of 50 patients with gastric cancer and ten control patients were labelled with biotinylated ER or PR antibodies followed by streptavidin PE. Flow cytometry was seen to increase the detection of ER levels in gastric cancer with more receptor-positive patients in this study than in results published to date. We believe this is related to the sensitivity of the flow cytometric assay with the detection of small shifts in ER level detected using cytokeratin gating. On analysis, the data showed no significant correlations with tumour stage and grade, and no differences were seen between normal mucosa and gastric cancer samples. Keywords: gastric cancer; oestrogen; progesterone; receptor Binding of hormones to their receptors results in formation of of tamoxifen, have also been inconclusive, and many studies stabilized complexes which interact with specific regions of DNA too small and poorly controlled (Kitaoka, 1983; Kojima and (Yamamato and Alberts, 1976).
    [Show full text]
  • Establishment of Estrogen Receptor-Positive Transplantable Rat Thyroid Tumor Cell Lines in Vivo1
    [CANCER RESEARCH 53, 440X-4412. September 15, 1W) Establishment of Estrogen Receptor-positive Transplantable Rat Thyroid Tumor Cell Lines in Vivo1 Yoshio Hiasa, Yoshiteru Kitahori, Katsunari Yane, Hiroto Nishioka, Kazuhiro Nakahashi, Noboru Konishi, Masato Ohshima, Kumio Okaichi, Takeo Ohnishi, and Jung-Chung Lin2 The Second Department of Pathology ¡YH., K. Y, H. N., K. N., N. K., M. O.¡ami Department of Biology ¡K.O., T. O.\, Nara Medicai University, Kashihara, Nara t>34.Japan, and Molecular Biology Section. HématologieDiseases Branch. Division of HIV/AIDS. Centers for Disease Control anil Prevention, Atlanta. Georgia 30333 ¡J-C.I../ ABSTRACT estrogen receptor in positive, transplantable thyroid tumors, facilitat ing further studies on the relation between ER expression and tumor We established 17 transplantable rat thyroid tumor cell lines from the primary thyroid tumor of rats induced by A'-bis(2-hydroxypropyl)nitro- growth. samine. Among the 17 tumor cell lines established, only two of them (Dl and Gl) were estrogen receptor (ER) positive. These two cell lines were MATERIALS AND METHODS characterized with respect to transplantability, histológica! features, ER contents and cellular localization, and expression of ER message. The ER Animals. Male Wistar rats were obtained from Shizuoka Experimental contents, determined by dextran-coated charcoal assay, were 13.3 and 20.7 Animal Farm (Shizuoka, Japan). fmol/mg protein for Dl and C>1 cell lines, respectively. Scatchard plot Reagents. DHPN was purchased from Nakarai Chemical Co. (Kyoto. analysis indicates that the dissociation constants (A',,i were 0.17 and 0.4 IIM. Japan );[3H]estradiol and 17ß-|mefA>'/-3H])methyltrienolonc from New Eng respectively, for Dl and Gl cell lines.
    [Show full text]
  • Estrogen Receptor Α/Prolactin Receptor Bilateral Crosstalk Promotes
    Int. J. Med. Sci. 2020, Vol. 17 3174 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(18): 3174-3189. doi: 10.7150/ijms.51176 Research Paper Estrogen receptor α/prolactin receptor bilateral crosstalk promotes bromocriptine resistance in prolactinomas Zhengzheng Xiao1, Xiaoli Yang2, Kun Zhang3, Zebin Liu1, Zheng Shao1, Chaojun Song1, Xiaobin Wang4 and Zhengwei Li5 1. Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003. 2. Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003. 3. Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 210011. 4. Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000. 5. Department of Neurosurgery, Zhongnan hospital of Wuhan university, Wuhan, Hubei 430071, P.R. China. Corresponding authors: Dr Zhengzheng Xiao. Departments of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003. E-mail: [email protected]; Dr Xiaobin Wang. Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000. E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • Investigations Into the Role of Exogenous Estrogenic Endocrine Disrupting Chemicals on Immune Dysregulation in Autoimmune Disease
    Investigations into the role of exogenous estrogenic endocrine disrupting chemicals on immune dysregulation in autoimmune disease Michael R. Edwards Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical and Veterinary Sciences S. Ansar Ahmed Thomas E. Cecere Liwu Li Xin M. Luo Lijuan Yuan May 8, 2019 Blacksburg, VA Keywords: Autoantibody, nephritis, immune complex, dietary This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Investigations into the role of exogenous estrogenic endocrine disrupting chemicals on immune dysregulation in autoimmune disease Michael Edwards ABSTRACT Estrogenic endocrine disrupting chemicals (EEDCs) are defined as chemicals that bind to estrogen receptors (ERs) and augment estrogenic functions, either through promoting or blocking estrogen receptor signaling. Recent reports highlight the growing concern surrounding environmental exposure to EEDCs and immune system modulation. A commonly prescribed EEDC, 17α-ethinyl estradiol, is a synthetic analog of 17β-estradiol (E2), and is also found in many environmental reservoirs of human and animal exposure. Little is known regarding the immunomodulatory effects of this EEDC. Autoimmune diseases, such as systemic lupus erythematosus (SLE), are characterized by a dysregulated immune system that has lost tolerance to self-antigens. The pathogenesis of SLE is still poorly understood. However, it is likely that genetics, epigenetics, hormones, and environmental factors, such as EEDC exposure, contribute to the pathogenesis and severity of SLE.
    [Show full text]