Understanding the Linux® Virtual Memory Manager BRUCE PERENS’ OPEN SOURCE SERIES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysing Aliasing in Java Applications
IT 20 048 Examensarbete 15 hp Augusti 2020 Analysing Aliasing in Java Applications Björn Berggren Institutionen för informationsteknologi Department of Information Technology Abstract Analysing Aliasing in Java Applications Björn Berggren Teknisk- naturvetenskaplig fakultet UTH-enheten Aliasing refers to the possibility of having multiple references to the same memory location and is a cornerstone concept in the imperative programming paradigm. As Besöksadress: applications grow large, it is hard for programmers to keep track of all places in the Ångströmlaboratoriet Lägerhyddsvägen 1 code where they employ aliasing, possibly resulting in hard-to-predict runtime errors. Hus 4, Plan 0 I present a tool, model and query language to perform dynamic aliasing analysis on Java programs. The tool uses the model to simulate the full execution of a program, Postadress: including how and when objects and references between them are created and Box 536 751 21 Uppsala removed. The query language consists of constructs that can be nested to form logical expressions, operating on the model to check whether a certain object remains in a Telefon: certain condition throughout the execution. The language is designed to monitor 018 – 471 30 03 lifetimes of specific objects and collect information about the execution as a whole. I Telefax: performed an experiment using the tool, examining traces from programs for 018 – 471 30 00 profiling, searching and parsing, showing that applications have different aliasing behaviour. All programs mostly use objects based on built-in Java classes, indicating Hemsida: that programmers could benefit from gaining the ability to control and limit how such http://www.teknat.uu.se/student objects can be aliased. -
Better Performance Through a Disk/Persistent-RAM Hybrid Design
The Conquest File System: Better Performance Through a Disk/Persistent-RAM Hybrid Design AN-I ANDY WANG Florida State University GEOFF KUENNING Harvey Mudd College PETER REIHER, GERALD POPEK University of California, Los Angeles ________________________________________________________________________ Modern file systems assume the use of disk, a system-wide performance bottleneck for over a decade. Current disk caching and RAM file systems either impose high overhead to access memory content or fail to provide mechanisms to achieve data persistence across reboots. The Conquest file system is based on the observation that memory is becoming inexpensive, which enables all file system services to be delivered from memory, except providing large storage capacity. Unlike caching, Conquest uses memory with battery backup as persistent storage, and provides specialized and separate data paths to memory and disk. Therefore, the memory data path contains no disk-related complexity. The disk data path consists of only optimizations for the specialized disk usage pattern. Compared to a memory-based file system, Conquest incurs little performance overhead. Compared to several disk-based file systems, Conquest achieves 1.3x to 19x faster memory performance, and 1.4x to 2.0x faster performance when exercising both memory and disk. Conquest realizes most of the benefits of persistent RAM at a fraction of the cost of a RAM-only solution. Conquest also demonstrates that disk-related optimizations impose high overheads for accessing memory content in a memory-rich environment. Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Storage Hierarchies; D.4.3 [Operating Systems]: File System Management—Access Methods and Directory Structures; D.4.8 [Operating Systems]: Performance—Measurements General Terms: Design, Experimentation, Measurement, and Performance Additional Key Words and Phrases: Persistent RAM, File Systems, Storage Management, and Performance Measurement ________________________________________________________________________ 1. -
Virtual Memory
Chapter 4 Virtual Memory Linux processes execute in a virtual environment that makes it appear as if each process had the entire address space of the CPU available to itself. This virtual address space extends from address 0 all the way to the maximum address. On a 32-bit platform, such as IA-32, the maximum address is 232 − 1or0xffffffff. On a 64-bit platform, such as IA-64, this is 264 − 1or0xffffffffffffffff. While it is obviously convenient for a process to be able to access such a huge ad- dress space, there are really three distinct, but equally important, reasons for using virtual memory. 1. Resource virtualization. On a system with virtual memory, a process does not have to concern itself with the details of how much physical memory is available or which physical memory locations are already in use by some other process. In other words, virtual memory takes a limited physical resource (physical memory) and turns it into an infinite, or at least an abundant, resource (virtual memory). 2. Information isolation. Because each process runs in its own address space, it is not possible for one process to read data that belongs to another process. This improves security because it reduces the risk of one process being able to spy on another pro- cess and, e.g., steal a password. 3. Fault isolation. Processes with their own virtual address spaces cannot overwrite each other’s memory. This greatly reduces the risk of a failure in one process trig- gering a failure in another process. That is, when a process crashes, the problem is generally limited to that process alone and does not cause the entire machine to go down. -
Automatic Detection of Bad Smells in Code: an Experimental Assessment
Journal of Object Technology Published by AITO — Association Internationale pour les Technologies Objets, c JOT 2011 Online at http://www.jot.fm. Automatic detection of bad smells in code: An experimental assessment Francesca Arcelli Fontanaa Pietro Braionea Marco Zanonia a. DISCo, University of Milano-Bicocca, Italy Abstract Code smells are structural characteristics of software that may indicate a code or design problem that makes software hard to evolve and maintain, and may trigger refactoring of code. Recent research is active in defining automatic detection tools to help humans in finding smells when code size becomes unmanageable for manual review. Since the definitions of code smells are informal and subjective, assessing how effective code smell detection tools are is both important and hard to achieve. This paper reviews the current panorama of the tools for automatic code smell detection. It defines research questions about the consistency of their responses, their ability to expose the regions of code most affected by structural decay, and the relevance of their responses with respect to future software evolution. It gives answers to them by analyzing the output of four representative code smell detectors applied to six different versions of GanttProject, an open source system written in Java. The results of these experiments cast light on what current code smell detection tools are able to do and what the relevant areas for further improvement are. Keywords code smells; code smell detection tools; refactoring; software quality evaluation. 1 Introduction Nowadays there is an increasing number of software analysis tools available for detecting bad programming practices, highlighting anomalies, and in general increasing the awareness of the software engineer about the structural features of the program under development. -
Preliminary Report on Empirical Study of Repeated Fragments in Internal Documentation
Proceedings of the Federated Conference on Computer Science DOI: 10.15439/2016F524 and Information Systems pp. 1573–1576 ACSIS, Vol. 8. ISSN 2300-5963 Preliminary Report on Empirical Study of Repeated Fragments in Internal Documentation Milan Nosál’, Jaroslav Porubän Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice Letná 9, 042 00, Košice, Slovakia Email: [email protected], [email protected] Abstract—In this paper we present preliminary results of an safe and therefore the programmer has to pay extra caution empirical study, in which we used copy/paste detection (PMD when using it in multithreaded systems (she has to use Event CPD implementation) to search for repeating documentation Dispatch Thread to safely work with the Swing components). fragments. The study was performed on 5 open source projects, including Java 8 SDK sources. The study shows that there are Swing JavaDoc documents it and for each affected class many occurrences of copy-pasting documentation fragments in includes a warning (see JPanel documentation in Figure 1). the internal documentation, e.g., copy-pasted method parameter description. Besides these, many of the copy-pasted fragments express some domain or design concern, e.g., that the method is obsolete and deprecated. Therefore the study indicates that the cross-cutting concerns are present in the internal documentation in form of documentation phrases. I. INTRODUCTION RESERVING and comprehending developer’s concerns P (intents) in the source code is still a current challenge in software development [1], [2], [3], [4]. In this paper we analyze the internal documentation (source code comments, JavaDoc, etc.) to recognize repeating documentation fragments that document those concerns (or features [5]). -
SFLC V Conservancy
Trademark Trial and Appeal Board Electronic Filing System. http://estta.uspto.gov ESTTA Tracking number: ESTTA863914 Filing date: 12/11/2017 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD Proceeding 92066968 Party Defendant Software Freedom Conservancy Correspondence PAMELA S CHESTECK Address CHESTEK LEGAL P O BOX 2492 RALEIGH, NC 27602 UNITED STATES Email: [email protected] Submission Motion for Summary Judgment Yes, the Filer previously made its initial disclosures pursuant to Trademark Rule 2.120(a); OR the motion for summary judgment is based on claim or issue pre- clusion, or lack of jurisdiction. The deadline for pretrial disclosures for the first testimony period as originally set or reset: 07/20/2018 Filer's Name Pamela S Chestek Filer's email [email protected] Signature /Pamela S Chestek/ Date 12/11/2017 Attachments Motion for SJ on affirmative defenses-signed.pdf(756280 bytes ) Kuhn-Declara- tion_summary-judgment_as-submitted_reduced-size-signed.pdf(2181238 bytes ) Sandler-declara- tion_summary-judgment_as-submitted-reduced-size-signed.pdf(1777273 bytes ) Chestek declaration_summary-judgment-signed-with-exhibits.pdf(2003142 bytes ) IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD In the Mater of Registraion No. 4212971 Mark: SOFTWARE FREEDOM CONSERVANCY Registraion date: September 25, 2012 Sotware Freedom Law Center Peiioner, v. Cancellaion No. 92066968 Sotware Freedom Conservancy Registrant. RESPONDENT’S MOTION FOR SUMMARY JUDGMENT ON ITS AFFIRMATIVE DEFENSES Introducion The Peiioner, Sotware Freedom Law Center (“SFLC”), is a provider of legal services. It had the idea to create an independent enity that would ofer inancial and administraive services for free and open source sotware projects. -
Memory Protection at Option
Memory Protection at Option Application-Tailored Memory Safety in Safety-Critical Embedded Systems – Speicherschutz nach Wahl Auf die Anwendung zugeschnittene Speichersicherheit in sicherheitskritischen eingebetteten Systemen Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades Doktor-Ingenieur vorgelegt von Michael Stilkerich Erlangen — 2012 Als Dissertation genehmigt von der Technischen Fakultät Universität Erlangen-Nürnberg Tag der Einreichung: 09.07.2012 Tag der Promotion: 30.11.2012 Dekan: Prof. Dr.-Ing. Marion Merklein Berichterstatter: Prof. Dr.-Ing. Wolfgang Schröder-Preikschat Prof. Dr. Michael Philippsen Abstract With the increasing capabilities and resources available on microcontrollers, there is a trend in the embedded industry to integrate multiple software functions on a single system to save cost, size, weight, and power. The integration raises new requirements, thereunder the need for spatial isolation, which is commonly established by using a memory protection unit (MPU) that can constrain access to the physical address space to a fixed set of address regions. MPU-based protection is limited in terms of available hardware, flexibility, granularity and ease of use. Software-based memory protection can provide an alternative or complement MPU-based protection, but has found little attention in the embedded domain. In this thesis, I evaluate qualitative and quantitative advantages and limitations of MPU-based memory protection and software-based protection based on a multi-JVM. I developed a framework composed of the AUTOSAR OS-like operating system CiAO and KESO, a Java implementation for deeply embedded systems. The framework allows choosing from no memory protection, MPU-based protection, software-based protection, and a combination of the two. -
Chapter 3. Booting Operating Systems
Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs. -
Evaluating Dependency Based Package-Level Metrics for Multi-Objective Maintenance Tasks
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 10, 2017 Evaluating Dependency based Package-level Metrics for Multi-objective Maintenance Tasks Mohsin Shaikh Adil Ansari Kashif Memon Qaid-e-Awam University Qaid-e-Awam University UCET, The Islamia University of Engineering Science of Engineering Science of Bahwalpur and Technology, Nawabshah and Technology, Nawabshah Akhtar Hussain Jalbani Ahmed Ali Qaid-e-Awam University Qaid-e-Awam University of Engineering Science of Engineering Science and Technology, Nawabshah and Technology, Nawabshah Abstract—Role of packages in organization and maintenance determine quality attributes of object oriented source code of software systems has acquired vital importance in recent [3], [4]. Conventionally, software evolution process has been research of software quality. With an advancement in modu- subject to structural and architectural changes in the source larization approaches of object oriented software, packages are code, targeting suitable and organized placement of classes widely considered as re-usable and maintainable entities of object- in particular. However, such re-factoring practices can cause oriented software architectures, specially to avoid complicated de- drift and deterioration in modularization quality of software pendencies and insure software design of well identified services. In this context, recently research study of H. Abdeen on automatic [5]. Consequently, to insure flexible software modularization, optimization of package dependencies -
ELF1 7D Virtual Memory
ELF1 7D Virtual Memory Young W. Lim 2021-07-06 Tue Young W. Lim ELF1 7D Virtual Memory 2021-07-06 Tue 1 / 77 Outline 1 Based on 2 Virtual memory Virtual Memory in Operating System Physical, Logical, Virtual Addresses Kernal Addresses Kernel Logical Address Kernel Virtual Address User Virtual Address User Space Young W. Lim ELF1 7D Virtual Memory 2021-07-06 Tue 2 / 77 Based on "Study of ELF loading and relocs", 1999 http://netwinder.osuosl.org/users/p/patb/public_html/elf_ relocs.html I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license compatible with this one. Young W. Lim ELF1 7D Virtual Memory 2021-07-06 Tue 3 / 77 Compling 32-bit program on 64-bit gcc gcc -v gcc -m32 t.c sudo apt-get install gcc-multilib sudo apt-get install g++-multilib gcc-multilib g++-multilib gcc -m32 objdump -m i386 Young W. -
Linux at 25 PETERHISTORY H
Linux at 25 PETERHISTORY H. SALUS Peter H. Salus is the author of A n June 1991, at the USENIX conference in Nashville, BSD NET-2 was Quarter Century of UNIX (1994), announced. Two months later, on August 25, Linus Torvalds announced Casting the Net (1995), and The his new operating system on comp.os.minix. Today, Android, Google’s Daemon, the Gnu and the Penguin I (2008). [email protected] version of Linux, is used on over two billion smartphones and other appli- ances. In this article, I provide some history about the early years of Linux. Linus was born into the Swedish minority of Finland (about 5% of the five million Finns). He was a “math guy” throughout his schooling. Early on, he “inherited” a Commodore VIC- 20 (released in June 1980) from his grandfather; in 1987 he spent his savings on a Sinclair QL (released in January 1984, the “Quantum Leap,” with a Motorola 68008 running at 7.5 MHz and 128 kB of RAM, was intended for small businesses and the serious hobbyist). It ran Q-DOS, and it was what got Linus involved: One of the things I hated about the QL was that it had a read-only operating system. You couldn’t change things ... I bought a new assembler ... and an editor.... Both ... worked fine, but they were on the microdrives and couldn’t be put on the EEPROM. So I wrote my own editor and assembler and used them for all my programming. Both were written in assembly language, which is incredibly stupid by today’s standards. -
HALO: Post-Link Heap-Layout Optimisation
HALO: Post-Link Heap-Layout Optimisation Joe Savage Timothy M. Jones University of Cambridge, UK University of Cambridge, UK [email protected] [email protected] Abstract 1 Introduction Today, general-purpose memory allocators dominate the As the gap between memory and processor speeds continues landscape of dynamic memory management. While these so- to widen, efficient cache utilisation is more important than lutions can provide reasonably good behaviour across a wide ever. While compilers have long employed techniques like range of workloads, it is an unfortunate reality that their basic-block reordering, loop fission and tiling, and intelligent behaviour for any particular workload can be highly subop- register allocation to improve the cache behaviour of pro- timal. By catering primarily to average and worst-case usage grams, the layout of dynamically allocated memory remains patterns, these allocators deny programs the advantages of largely beyond the reach of static tools. domain-specific optimisations, and thus may inadvertently Today, when a C++ program calls new, or a C program place data in a manner that hinders performance, generating malloc, its request is satisfied by a general-purpose allocator unnecessary cache misses and load stalls. with no intimate knowledge of what the program does or To help alleviate these issues, we propose HALO: a post- how its data objects are used. Allocations are made through link profile-guided optimisation tool that can improve the fixed, lifeless interfaces, and fulfilled by