Front Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Problem of Creating a Professional Dictionary of Uncodified Vocabulary
Utopía y Praxis Latinoamericana ISSN: 1315-5216 ISSN: 2477-9555 [email protected] Universidad del Zulia Venezuela Problem of Creating a Professional Dictionary of Uncodified Vocabulary MOROZOVA, O.A; YAKHINA, A.M; PESTOVA, M.S Problem of Creating a Professional Dictionary of Uncodified Vocabulary Utopía y Praxis Latinoamericana, vol. 25, no. Esp.7, 2020 Universidad del Zulia, Venezuela Available in: https://www.redalyc.org/articulo.oa?id=27964362018 DOI: https://doi.org/10.5281/zenodo.4009661 This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative O.A MOROZOVA, et al. Problem of Creating a Professional Dictionary of Uncodified Vocabulary Artículos Problem of Creating a Professional Dictionary of Uncodified Vocabulary Problema de crear un diccionario profesional de vocabulario no codificado O.A MOROZOVA DOI: https://doi.org/10.5281/zenodo.4009661 Kazan Federal University, Rusia Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=27964362018 http://orcid.org/0000-0002-4573-5858 A.M YAKHINA Kazan Federal University, Rusia [email protected] http://orcid.org/0000-0002-8914-0995 M.S PESTOVA Ural State Law University, Rusia [email protected] http://orcid.org/0000-0002-7996-9636 Received: 03 August 2020 Accepted: 10 September 2020 Abstract: e article considers the problem of lexicographical fixation of uncodified vocabulary in a professional dictionary. e oil sublanguage, being one of the variants of common language realization used by a limited group of its medium in conditions of official and also non-official communication, provides interaction of people employed in the oil industry. -
A Manipuri-English Bilingual Electronic Dictionary -Design and Implementation S
ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 1, July 2012 A Manipuri-English Bilingual Electronic Dictionary -Design and Implementation S. Poireiton Meitei, Shantikumar Ningombam, H.Mamata Devi, Bipul Syam Purkayastha Abstract— Bilingual Electronic dictionaries are some kind of II. MANIPURI LANGUAGE system that hopes to process natural languages as people have Manipuri, locally known as Meiteilon (the Meitei+lon information about words, their meaning and relative information(from source language) to another(target) language. „language‟), is spoken basically in the state of Manipur So, machine readable electronic dictionary becomes the central which is in the north eastern India. It is also spoken in resources for Natural Language applications. Dictionaries and Assam, Tripura, Mizoram, Burma and Bangladesh. other lexical resources are not yet widely available in electronic Manipuri is the only medium of communication among 29 form for Manipuri Language. This paper describes the design different mother tongues. Hence it is regarded as lingua and implementation of a developing Electronic franca of Manipur state. Since 20 August 1992 Manipuri Manipuri-English Bilingual dictionary. This implementation become the first TB (Tibeto Burman) language to receive will provide a more effective combination of traditional recognition as a schedule VIII language of India. Before this Manipuri-English bi-lingual lexicographic information and every date, Manipuri has adopted as the medium of their conceptual information. instruction and examination. More and above, Manipuri is Index Terms: - Manipuri Language, Bilingual, Dictionaries, taught up to Ph.D. level in the Indian Universities. It is also Tibeto Burman, Natural language Processing. -
Towards a Conceptual Representation of Lexical Meaning in Wordnet
Towards a Conceptual Representation of Lexical Meaning in WordNet Jen-nan Chen Sue J. Ker Department of Information Management, Department of Computer Science, Ming Chuan University Soochow University Taipei, Taiwan Taipei, Taiwan [email protected] [email protected] Abstract Knowledge acquisition is an essential and intractable task for almost every natural language processing study. To date, corpus approach is a primary means for acquiring lexical-level semantic knowledge, but it has the problem of knowledge insufficiency when training on various kinds of corpora. This paper is concerned with the issue of how to acquire and represent conceptual knowledge explicitly from lexical definitions and their semantic network within a machine-readable dictionary. Some information retrieval techniques are applied to link between lexical senses in WordNet and conceptual ones in Roget's categories. Our experimental results report an overall accuracy of 85.25% (87, 78, 89, and 87% for nouns, verbs, adjectives and adverbs, respectively) when evaluating on polysemous words discussed in previous literature. 1 Introduction Knowledge representation has traditionally been thought of as the heart of various applications of natural language processing. Anyone who has built a natural language processing system has had to tackle the problem of representing its knowledge of the world. One of the applications for knowledge representation is word sense disambiguation (WSD) for unrestricted text, which is one of the major problems in analyzing sentences. In the past, the substantial literature on WSD has concentrated on statistical approaches to analyzing and extracting information from corpora (Gale et al. 1992; Yarowsky 1992, 1995; Dagan and Itai 1994; Luk 1995; Ng and Lee 1996). -
Inferring Parts of Speech for Lexical Mappings Via the Cyc KB
to appear in Proceeding 20th International Conference on Computational Linguistics (COLING-04), August 23-27, 2004 Geneva Inferring parts of speech for lexical mappings via the Cyc KB Tom O’Hara‡, Stefano Bertolo, Michael Witbrock, Bjørn Aldag, Jon Curtis,withKathy Panton, Dave Schneider,andNancy Salay ‡Computer Science Department Cycorp, Inc. New Mexico State University Austin, TX 78731 Las Cruces, NM 88001 {bertolo,witbrock,aldag}@cyc.com [email protected] {jonc,panton,daves,nancy}@cyc.com Abstract in the phrase “painting for sale.” In cases like this, semantic or pragmatic criteria, as opposed We present an automatic approach to learn- to syntactic criteria only, are necessary for deter- ing criteria for classifying the parts-of-speech mining the proper part of speech. The headword used in lexical mappings. This will fur- part of speech is important for correctly identifying ther automate our knowledge acquisition sys- phrasal variations. For instance, the first term can tem for non-technical users. The criteria for also occur in the same sense in “paint for money.” the speech parts are based on the types of However, this does not hold for the second case, the denoted terms along with morphological since “paint for sale” has an entirely different sense and corpus-based clues. Associations among (i.e., a substance rather than an artifact). these and the parts-of-speech are learned us- When lexical mappings are produced by naive ing the lexical mappings contained in the Cyc users, such as in DARPA’s Rapid Knowledge For- knowledge base as training data. With over mation (RKF) project, it is desirable that tech- 30 speech parts to choose from, the classifier nical details such as the headword part of speech achieves good results (77.8% correct). -
Symbols Used in the Dictionary
Introduction 1. This dictionary will help you to be able to use Einglish - English Dictionary well & use it in your studying. 2. The exercies will provide you with what information your dictionary contains & how to find as well use them quickly & correctly. So you MUST: 1. make sure you understand the instructuion of the exercise. 2. check on yourself by working out examples, using your dictionay. 3. Do it carefully but quickly as you can even if you think you know the answer. 4. always scan the whole entry first to get the general idea, then find the part that you’re interested in. 5. Read slowly & carefully. 6. Help to make the learning process interesting. 7. If you make a mistake, find out why. Remember, the more you use the dictionary, the more uses you will find for it. 1 Chapter one Dictionary Entry • Terms used in the Dictionary. •Symbols used in the Dictionary. •Different typfaces used in the Dictionary. •Abbreviation used in the Dictionary. 2 1- Terms used in the Dictionay: -What is Headword? -What is an Entry? -What is a Definition? -What is a Compound? -What is a Derivative? -What information does an entry contain? 3 1- What is Headword? It’s the word you look up in a dictionary. Also, it’s the name given to each of the words listed alphabetically. 4 2- What is an Entry? It consists of a headword & all the information about the headword. 5 3- What is a Definition? It’s a part of an entry which describes a particular meaning & usage of the headword. -
An Analysis Towards the Development of Electronic Bilingual Dictionary (Manipuri-English) -A Report
Sagolsem Poireiton Meitei et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3423-3426 An Analysis towards the Development of Electronic Bilingual Dictionary (Manipuri-English) -A Report Sagolsem Poireiton Meitei, Shantikumar Ningombam, Prof. Bipul Syam Purkayastha Department of Computer Science Assam University, Silchar-788011 ABSTRACT-Meaningful sentences are composed of travel dictionaries, dictionaries of idioms and meaningful words; any system that hopes to process natural colloquialisms, a guide to pronunciation, a grammar languages as people do must have information about words, reference, common phrases and collocations, and a their meaning and relative words in another language. This dictionary of foreign loan words information is traditionally provided through electronic dictionaries. But these dictionary entries evolved for the convenience of human readers, not for machines. So, machine MANIPURI LANGUAGE readable electronic dictionary becomes the central resources Manipuri, locally known as Meiteilon (the Meitei+lon for Natural Language applications. Dictionaries and other ‘language’), is spoken basically in the state of Manipur lexical resources are not yet widely available in electronic form which is in the north eastern india. It is also spoken in for Manipuri language. And there is no machine readable Assam, Tripura, Mizoram, Burma and Bangladesh. dictionary that can provide both of lexical resources and Manipuri is the only medium of communication among 29 conceptual information. This paper describes the ongoing different mother tongues. Hence it is regarded as lingua development of an Electronic Manipuri Bilingual dictionary. franca of Manipur state. Since 20 August 1992 Manipuri This implementation will provide a more effective combination become the first TB (Tibeto Burman) language to receive of traditional English-Manipuri bi-lingual lexicographic information and their conceptual information recognition as a schedule VIII language of India. -
The Art of Not Being Scripted So Much. the Politics of Writing Hmong
The Art of Not Being Scripted So Much The Politics of Writing Hmong Language(s)1 Jean Michaud This article discusses the persistent absence of a consensus on a script for the language of the Hmong, a kinship-based society of 5 million spread over the uplands of Southwest China and northern Indochina, with a vigorous diaspora in the West. In search of an explanation for this unusual situation, this article proposes a political reading inspired by James C. Scott’s 2009 book The Art of Not Being Governed. A particular focus is put on Scott’s claim of tactical rejection of literacy among upland groups of Asia. To set the scene, the case of the Hmong is briefly exposed before detailing the successive appearance of orthographies for their language(s) over one century. It is then argued that the lack of consensus on a common writing system might be a reflection of deeper political motives rather than merely the result of historical processes. Anthropologists and linguists have long noted that it is com- writing system appears to be of little interest to the majority of mon for stateless, kinship-based societies such as the Hmong its speakers (Thao 2006)—outside very specific moments of to shape neither their own script nor borrow someone else’s rebellious crises, a point I return to later. (Goody 1968). Here, the twist is that while the Hmong as a I am not suggesting that the Hmong situation is monolithic; group have not adopted a common writing system, over two on the contrary, it is multifarious, as we will see. -
DICTIONARY News
Number 17 y July 2009 Kernerman kdictionaries.com/kdn DICTIONARY News KD’s BLDS: a brief introduction In 2005 K Dictionaries (KD) entered a project of developing We started by establishing an extensive infrastructure both dictionaries for learners of different languages. KD had already contentwise and technologically. The lexicographic compilation created several non-English titles a few years earlier, but those was divided into 25 projects: 1 for the French core, 8 for the were basic word-to-word dictionaries. The current task marked dictionary cores of the eight languages, another 8 for the a major policy shift for our company since for the first time we translation from French to eight languages, and 8 more for the were becoming heavily involved in learner dictionaries with translation of each language to French. target languages other than English. That was the beginning of An editorial team was set up for developing each of the nine our Bilingual Learners Dictionaries Series (BLDS), which so (French + 8) dictionary cores. The lexicographers worked from far covers 20 different language cores and keeps growing. a distance, usually at home, all over the world. The chief editor The BLDS was launched with a program for eight French for each language was responsible for preparing the editorial bilingual dictionaries together with Assimil, a leading publisher styleguide and the list of headwords. Since no corpora were for foreign language learning in France which made a strategic publicly available for any of these languages, each editor used decision to expand to dictionaries in cooperation with KD. different means to retrieve information in order to compile the The main target users were identified as speakers of French headword list. -
Japanese-English Cross-Language Headword Search of Wikipedia
Japanese-English Cross-Language Headword Search of Wikipedia Satoshi Sato and Masaya Okada Graduate School of Engineering Nagoya University Chikusa-ku, Nagoya, Japan [email protected] masaya [email protected] Abstract glish article. To realize CLHS, term translation is required. This paper describes a Japanese-English cross-language headword search system of Term translation is not a mainstream of machine Wikipedia, which enables to find an appro- translation research, because a simple dictionary- priate English article from a given Japanese based method is widely used and enough for query term. The key component of the sys- general terms. For technical terms and proper tem is a term translator, which selects an ap- nouns, automatic extraction of translation pairs propriate English headword among the set from bilingual corpora and the Web has been in- of headwords in English Wikipedia, based on the framework of non-productive ma- tensively studied (e.g., (Daille et al., 1994) and chine translation. An experimental result (Lin et al., 2008)) in order to fill the lack of en- shows that the translation performance of tries in a bilingual dictionary. However, the qual- our system is equal or slightly better than ity of automatic term translation is not well exam- commercial machine translation systems, ined with a few exception (Baldwin and Tanaka, Google translate and Mac-Transer. 2004). Query translation in cross-language infor- mation retrieval is related to term translation, but it concentrates on translation of content words in 1 Introduction a query (Fujii and Ishikawa, 2001). Many people use Wikipedia, an encyclopedia on In the CLHS situation, the ultimate goal of the Web, to find meanings of unknown terms. -
Neo-Vernacularization of South Asian Languages
LLanguageanguage EEndangermentndangerment andand PPreservationreservation inin SSouthouth AAsiasia ed. by Hugo C. Cardoso Language Documentation & Conservation Special Publication No. 7 Language Endangerment and Preservation in South Asia ed. by Hugo C. Cardoso Language Documentation & Conservation Special Publication No. 7 PUBLISHED AS A SPECIAL PUBLICATION OF LANGUAGE DOCUMENTATION & CONSERVATION LANGUAGE ENDANGERMENT AND PRESERVATION IN SOUTH ASIA Special Publication No. 7 (January 2014) ed. by Hugo C. Cardoso LANGUAGE DOCUMENTATION & CONSERVATION Department of Linguistics, UHM Moore Hall 569 1890 East-West Road Honolulu, Hawai’i 96822 USA http:/nflrc.hawaii.edu/ldc UNIVERSITY OF HAWAI’I PRESS 2840 Kolowalu Street Honolulu, Hawai’i 96822-1888 USA © All text and images are copyright to the authors, 2014 Licensed under Creative Commons Attribution Non-Commercial No Derivatives License ISBN 978-0-9856211-4-8 http://hdl.handle.net/10125/4607 Contents Contributors iii Foreword 1 Hugo C. Cardoso 1 Death by other means: Neo-vernacularization of South Asian 3 languages E. Annamalai 2 Majority language death 19 Liudmila V. Khokhlova 3 Ahom and Tangsa: Case studies of language maintenance and 46 loss in North East India Stephen Morey 4 Script as a potential demarcator and stabilizer of languages in 78 South Asia Carmen Brandt 5 The lifecycle of Sri Lanka Malay 100 Umberto Ansaldo & Lisa Lim LANGUAGE ENDANGERMENT AND PRESERVATION IN SOUTH ASIA iii CONTRIBUTORS E. ANNAMALAI ([email protected]) is director emeritus of the Central Institute of Indian Languages, Mysore (India). He was chair of Terralingua, a non-profit organization to promote bi-cultural diversity and a panel member of the Endangered Languages Documentation Project, London. -
Download in the Conll-Format and Comprise Over ±175,000 Tokens
Integrated Sequence Tagging for Medieval Latin Using Deep Representation Learning Mike Kestemont1, Jeroen De Gussem2 1 University of Antwerp, Belgium 2 Ghent University, Belgium *Corresponding author: [email protected] Abstract In this paper we consider two sequence tagging tasks for medieval Latin: part-of-speech tagging and lemmatization. These are both basic, yet foundational preprocessing steps in applications such as text re-use detection. Nevertheless, they are generally complicated by the considerable orthographic variation which is typical of medieval Latin. In Digital Classics, these tasks are traditionally solved in a (i) cascaded and (ii) lexicon-dependent fashion. For example, a lexicon is used to generate all the potential lemma-tag pairs for a token, and next, a context-aware PoS-tagger is used to select the most appropriate tag-lemma pair. Apart from the problems with out-of-lexicon items, error percolation is a major downside of such approaches. In this paper we explore the possibility to elegantly solve these tasks using a single, integrated approach. For this, we make use of a layered neural network architecture from the field of deep representation learning. keywords tagging, lemmatization, medieval Latin, LSTM, deep learning INTRODUCTION Latin —and its historic variants in particular— have long been a topic of major interest in Natural Language Processing [Piotrowksi 2012]. Especially in the community of Digital Humanities, the automated processing of Latin texts has always been a popular research topic. In a variety of computational applications, such as text re-use detection [Franzini et al, 2015], it is desirable to annotate and augment Latin texts with useful morpho-syntactical or lexical information, such as lemmas. -
Phonemic Similarity Metrics to Compare Pronunciation Methods
Phonemic Similarity Metrics to Compare Pronunciation Methods Ben Hixon1, Eric Schneider1, Susan L. Epstein1,2 1 Department of Computer Science, Hunter College of The City University of New York 2 Department of Computer Science, The Graduate Center of The City University of New York [email protected], [email protected], [email protected] error rate. The minimum number of insertions, deletions and Abstract substitutions required for transformation of one sequence into As graphemetophoneme methods proliferate, their careful another is the Levenshtein distance [3]. Phoneme error rate evaluation becomes increasingly important. This paper ex (PER) is the Levenshtein distance between a predicted pro plores a variety of metrics to compare the automatic pronunci nunciation and the reference pronunciation, divided by the ation methods of three freelyavailable graphemetophoneme number of phonemes in the reference pronunciation. Word er packages on a large dictionary. Two metrics, presented here ror rate (WER) is the proportion of predicted pronunciations for the first time, rely upon a novel weighted phonemic substi with at least one phoneme error to the total number of pronun tution matrix constructed from substitution frequencies in a ciations. Neither WER nor PER, however, is a sufficiently collection of trusted alternate pronunciations. These new met sensitive measurement of the distance between pronunciations. rics are sensitive to the degree of mutability among phonemes. Consider, for example, two pronunciation pairs that use the An alignment tool uses this matrix to compare phoneme sub ARPAbet phoneme set [4]: stitutions between pairs of pronunciations. S OW D AH S OW D AH Index Terms: graphemetophoneme, edit distance, substitu S OW D AA T AY B L tion matrix, phonetic distance measures On the left are two reasonable pronunciations for the English word “soda,” while the pair on the right compares a pronuncia 1.